حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه تبدیل مبناهای عددی به زبان سی شارپ

اختصاصی از حامی فایل پروژه تبدیل مبناهای عددی به زبان سی شارپ دانلود با لینک مستقیم و پر سرعت .

پروژه تبدیل مبناهای عددی به زبان سی شارپ


پروژه تبدیل مبناهای عددی به زبان سی شارپ

این پروژه برای تبدیل مبناهای عددی طراحی شده است و حتی برای تبدیل عددهای اعشاری نیز کاربرد دارد در این پروژه برای تبدیل مبناهای 2 به 8 و 2 به 10 و 2 به 16 و 10 به 2 و 8 به 10 و 10 به 2 به صورت اعشاری و 2 به 16 به صورت اعشاری و 8 به 10 به صورت اعشاری و 2 به 8 به صورت اعشاری طراحی شده است لازم به ذکر است در تبدیل مبنای اعشاری از / برای ممیز استفاده کنید 


دانلود با لینک مستقیم


پروژه تبدیل مبناهای عددی به زبان سی شارپ

دانلود مقاله تبدیل انرژی باد به برق

اختصاصی از حامی فایل دانلود مقاله تبدیل انرژی باد به برق دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله تبدیل انرژی باد به برق


دانلود مقاله تبدیل انرژی باد به برق

  تبدیل انرژی باد به برق بسیار آسان و ارزان میباشد، لذا در افغانستان خصوصا در مناطق باد خیزی مانند هرات یکی از بهترین راههای کسب انرژی برق میباشد.

 این صفحه بر آنست تا با اطلاع رسانی خصوصا تصویری به هموطنان عزیز چگونگی کار و ساخت ژنراتور کوچک خانگی بادی را آموزش دهد.

 در تصویر زیر نقشه یک نیروگاه کوچک بادی خانگی ترسیم شده است.

تعریف انرژی:

در تعریف انرژی می توانیم بگوییم که: انرژی توانایی انجام کار .
یعنی تمامی موجودات برای انجام کار باید غذا مصرف کنند تا این غذا بصورت انرژی در ماهیچه های آنها ذخیره شود که در موقع لازم بتوانند از آن استفاده کنند.

با پیشرفت انقلاب تکنولوژیک تمامی دستگاه ها و ماشینها به نوعی از انرژی های مختلف استفاده کنند. مثلا ماشین بنزین مصرف نکند برای ما نمی تواند کار انجام دهد یا یخچال انرژی الکتریکی مصرف نکند نمی تواند عمل سرمایشی انجام دهد.

انرژی باد یک انرژی قابل استفاده است، زیرا که به طور مستقیم با بازده زیاد به الکتریسیته تبدیل می شود. در سوئد ، آلمان ، انگلستان ، دانمارک و استرالیا ماشین های بادی بزرگ و کوچک ساخته شده و برنامه هایی را در جهت ادامه پژوهش ها و استفاده عملی از امکانات صنعتی انرژی باد مخصوصا واحد هایی با توان بزرگ مورد مطالعه است.

تاریخچه:

انرژی باد با ساخت ماشین های اولیه بادی در روزگار قدیم مورد استفاده قرار گرفت.احتمالا نخستین ماشین های بادی به توسط یونانیان ساخته شده است. مصری ها ، رومی ها و چینی ها برای قایقرانی و آبیاری از انرژی باد استفاده کرده اند.

بعد ها استفاده از توربین های بادی با محور قائم در سراسر کشور های اسلامی معمول شد. سپس دستگاه های بادی با محور قائم با میله های چوبی توسعه یافت به طوریکه در اواسط قرن نوزدهم در حدود 9 هزار ماشین بادی به منظور های گوناگون مورد استفاده قرار می گرفت.

سیر تحولی و رشد استفاده از انرژی بادی:

باد یکی از مظاهر انرژی خورشیدی و همانند هوای متحرک است. و پیوسته قسمت کوچکی از تابش خورشید که از خارج به آتمسفر می رسد، به انرژی باد تبدیل می شود. گرم شدن زمین و جو آن به طور نامساوی و غیر یکنواخت سبب تولید جریان های همرفت می شود. و نیز حرکت نسبی جو زمین عامل تولید باد می گردد.
دو درصد از انرژی خورشید که به زمین می رسد به باد تبدیل می گردد. 35 % انرژی باد در ضخامت یک کیلو متری از سطح زمین موجود است.محاسبات نشان می دهد، که برای تمام سیاره زمین ، انرژی موجود 1.3x1014 وات بر مترمربع است که بیست برابر انرژی مصرفی فعلی دنیا می باشد.

 انواع ماشین های بادی :

ماشین های بادی را معمولاً بر حسب وضعیت محور دوران روتور آنها نسبت به جهت وزش باد و یا ظرفیت آنها طبقه بندی می کنند.

روتورهای با محور افقی:

روتورهای با محور افقی به منظور استفاده از نیروهای بالابر و مقاوم ساخته می شوند. عموماً روتورهای با نیروهای بالا برنده که برای سطح معینه از روتور ، نیروی بالابرنده بیشتری نسبت به نیروی مقاوم در همان سطح در روتورهای مقاوم تولید می کنند. ترجیح داده می شود به علاوه ، روتورهای ضربه ای عموماً نمی توانند سریعتر از سرعت باد بچرخند. بادرنظر گرفتن وزن ، دستگاه روتورهای بالابرنده توان بیشتری را تولید کرده و ارزانتر تمام خواهد شد. تعداد پره ها می توانند متغییر باشند و تاکنون از یک تا 50 پره ساخته شده اند.ماشین های بزرگی از نوع روتور با محور افقی ساخته اند.

 انواع ماشین های بادی از نوع روتور با محور افقی:

ماشین Mod_ o: قطر روتور 38 متر و توان تولیدی آن 100 کیلو وات بر ساعت برای باد 16 متر برثانیه است. که روی برجی به ارتفاع 33 متر سوار است. بازده این ماشین 40درصد است.

ماشینMod oA: این ماشین ها اشکال تکمیل شده Mod_ o بوده و دو نمونه از آن ها در آمریکا به قطر 38 متر و با توان خروجی 125 و 200 کیلو وات ساخته شده است.

 روتورهای با محور قائم:

روتورهای با محور دوران قائم نسبت به روتورهای با محور افقی ارجحیت دارند، زیرا لازم نیست آن ها را با تعبیر جهت وزش باد ، دوران داد. این عمل باعث می شود که دستگاه خیلی پیچیده نشود و در ضمن نیروهای چرخشی ناشی از دوران که بر بلبرینگ ها و سایر مولفات داده می شود، کمتر شود.

شامل 11 صفحه فایل WORD قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله تبدیل انرژی باد به برق

دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

اختصاصی از حامی فایل دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن


دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن

کاربرد تبدیل لاپالس در تحلیل مدار

16-1- مقدمه

تبدیل لاپالس دو ویژگی دارد که آن را به ابزاری جالب توجه در تحلیل مدارها تبدیل کرده است. نخست به کمک آن می توان مجموعه ای از معادلات دیفرانسیلی خطی با ضرایب ثابت را به معادلات چند جمله ای خطی تبدیل کرد. دوم، در این تبدیل مقادیر اولیة متغیرهای جریان و ولتاژ خود به خود وارد معادلات چند جمله ای می شوند. بنابراین شرایط اولیه جزء لاینفک فرایند تبدیل اند. اما در روشهای کلاسیک حل معادلات دیفرانسیل شرایط اولیه زمانی وارد می شوند که می خواهیم ضرایب مجهول را محاسبه کنیم.

هدف ما در این فصل ایجاد روشی منظم برای یافتن رفتار گذرای مدارها به کمک تبدیل لاپلاس است. روش پنج مرحله ای بر شمرده شده در بخش 15-7 اساس این بحث است. اولین گام در استفاده موثر از روش تبدیل لاپلاس از بین بردن ضرورت نوشتن معادلات انتگرالی –دیفرانسیلی توصیف کنندة مدار است. برای این منظور باید مدار هم از مدار را در حوزةs به دست آوریم. این امر به ما امکان می دهد که مداری بسازیم که مستقیماً در حوزة تحلیل شود بعد از فرمولبندی مدار در حوزة sمی توان از روشهای تحلیلی بدست آمده (نظیر روشهای ولتاژ گره، جریان خانه و ساده سازی مدار) استفاده کرد و معادلات جبری توصیف کنندة مدار را نوشت. از حل این معادلات جبری، جریانها و ولتاژهای مجهول به صورت توابعی گویا به دست می آیند که تبدیل عکس آنها را به کمک تجزیه به کسرهای ساده به دست می اوریم. سرانجام روابط حوزه زمانی را می آزماییم تا مطمئن شویم که جوابهای به دست امده با شرایط اولیة مفروض و مقادیر نهایی معلوم سازگارند.

در بخش 16-2- هم از عناصر را در حوزة s به دست می آوریم. در شروع تحلیل مدارهای حوزة s باید دانست که بعد ولتاژ تبدیل شده ولت ثانیه و بعد جریان تبدیل شده آمپر ثانیه است. بعد نسبت ولتاژ به جریان در حوزة s ولت بر آمپر است و بنابراین در حوزة s یکای پاگیرایی ( امپدانس) اهم و یکای گذارایی ( ادمیتانس) زیمنس یا مو است.

16-2- عناصر مدار در حوزة s

روش به دست آوردن مدار هم از عناصر مدار در حوزة s ساده است. نخست رابطة ولتاژ و جریان عنصر در پایانه هایش را در حوزه زمان می نویسم. سپس از این معادله تبدیل لاپلاس می گیریم به این طریق رابطة جبری میان ولتاژ و جریان در حوزة s به دست می آید. سرانجام مدلی می سازیم که رابطة میان جریان و ولتاژ در حوزة s را برآورد سازد. در تمام این مراحل قرارداد علامت منفی را به کار می بریم.

نخست از مقاومت شروع میکنیم، بنا به قانون اهم داریم

(16-1)                              

از آنجا که R ثابت است، تبدیل لاپلاس معادلة (16-1) چنین است .

(16-2)                           V=RI

که در آن

 

بنا به معادلة (16-2) مدار هم ارز یک مقاومت در حوزة s مقاومتی برابر R اهم است که جریان آن Iآمپر – ثانیه و ولتاژ آن V ولت –ثانیه است.

مدارهای مقاومت در حوزة زمان و حوزه بسامد در شکل 16-1 دیده می شود به یاد داشته باشید که در تبدیل مقاومت از حوزة زمان به حوزة بسامد تغییری در آن ایجاد نمی شود.

القاگری با جریان اولیة Io در شکل 16-2 آمده است. معادلة ولتاژ و جریان آن در حوزة زمان چنین است.

 

شکل 16-1- مقاومت در الف) حوزة زمان ،ب) حوزة بسامد.

 

شکل 16-2- القا گر L هانری با جریان اولیه Io آمپر.

در حوزة زمان چنین است

(16-3)                   

پس از تبدیل لاپلاس گرفتن از معادلة (16-3) داریم

(16-4)                   

                         

به کمک دو مدار مختلف می توان معادلة (16-4) را تحقق بخشید. مدار هم از اول مداری است متشکل از یک امپدانس sL اهمی که با یک منبع ولتاژ مستقل ‎LIo ولت ثانیه ای متوالی است. این مدار در شکل 16-3 دیده می شود در بررسی مدار هم ارز حوزة بسامدی شکل 16-3 توجه کنید که جهت ولتاژ منبع LIo بر مبنای علامت منفی مجود در معادله (16-4) است توجه به این نکته نیز اهمیت دارد که Io علامت جبری مخصوص به خود را دارد. یعنی چنانچه مقدار اولیة I خلاف جهت مبنای I باشد آنگاه Io مقدار منفی دارد.

مدار هم از دیگری که معادله (16-4) را برآورده، می سازد متشکل است از یک امپدانس

 

SL اهمی که با یک منبع جریان مستقل Io/s آمپر ثانیه ای موازی است. این مدار هم ارز در شکل 16-4 آمده است.

برای به دست آوردن مدار هم از شکل 16-4 راههای مختلفی موجود است. یکی از این راهها حل معادلة (16-4) نسبت به جریان I و ساخت مداری بر حسب معادلة به دست آمده بنابراین

(16-5)               

به سادگی مشاهده می شود که مدار شکل 16-4 معادلة (16-5) را برآورده می سازد دو راه دیگر به دست آوردن مدار شکل 16-4 عبارت اند از (1) به دست اوردن هم از نور تن مدار شکل (16-3، (2) به دست آوردن  جریان القا گر بر حسب ولتاژ آن و گرفتن تبدیل لاپلاس از معادلة به دست آمده این دو روش به صورت تمرین در مسائل 16-1 و 16-2 به خواننده واگذار می شود.

قابل توجه است که هرگاه انرژی اولیة ذخیره شده در القا گر صفر باشد یعنی اگر Io=o مدار هم ارز القا گر در حوزة بسامد به صورت القا گری با امپدانس sL اهم در می آید. این مدار در شکل 16-5 آمده است.

برای خازنهای با بار اولیه نیز دو مدار هم ارز در حوزة s وجود دارد. خازنی که با بار اولیة Vo ولت در شکل 16-6 دیده می شود. جریان خازن چنین است.

 

شکل 16-5 مدار خوزة بسامدی القاگری با جریان اولیه صفر.

 ...

شکل 16-6- خازنی C فارادی که تاVo ولت بار دار شده است.

(16-6)                   

پس از تبدیل معادلة (16-6) داریم

 

یا

(16-7)                    I=sCV-CVo

از معادله فوق دیده می شود که جریان I در حوزة بسامد از دو جریان شاخه ای تشکیل می شود یکی از شاخه ها از یک گذارایی به مقدار sc مو و دیگری از یک منبع جریان مستقل CVo آمپر ثانیه ای تشکیل  می شود. این مدار هم ارز در شکل 16-7 آمده است.

از حل معادلة (16-7) نسبت به V می توان مدار هم ارز متوالی خازن باردار را به دست آورد. بنابراین داریم

(16-8)                   

مداری که در شکل 16-8 آمده است تحقق معادلة (16-8) است.

در مدارهای هم ارز شکلهای 16-7 و 16-8، علامت جبری خود را دارد. یعنی اگر جهت  خلاف جهت مبنای  باشد  مقداری منفی خواهد بود. اگر ولتاژ اولیه خازن صفر باشد مدارهای هم ارز ساده می شوند و تنها امپدانس sc/1 اهمی باقی می ماند که در شکل 16-9 آمده است.

مدارهای حوزه بسامدی به دست آمده در این بخش در جدول 16-1 آمده اند. کاربرد این مدارها در بخش 16-4 نشان داده خواهد شد.

 

جدول 1016 مدارهای هم ارز در حوزة s

 

شکل 16-9 مدار حوزة بسامدی خازنی با ولتاژ اولیة صفر

16-3- تحلیل مدار در حوزة s

پیش از بررسی مدارها در حوزة s به ذکر چند نکته می پردازیم که اساس تمام کارهای بعدی ماست.

نخست میدانیم که چنانچه در القا گر و خازنها انرژی اولیه نداشته باشیم رابطة ولتاژ و جریان آنها چنین است.

(16-9)            V=ZI

که در آن Z امپدانس (پاگیرایی) عنصر در حوزة s است. به این ترتیب امپدانس مقاومت R اهم، امپدانس القا گر sL اهم، و امپدانس خازن sC/1 اهم است. نکته ای که در معادلة (16-9) آمده است، در شکلهای 16-1(ب)، 16-5، و 16-9 مشخص شده است. گاه معادلة (16-9) را قانون اهم در حوزة s می نامند.

عکس پاگیرایی، گذارایی، گذاراییها در حوزة s دقیقاً همان قواعد ترکیب آنها در حوزة فازبرداری است. در تحلیل  حوزة بسامدی می توان از ساده کردنهای متوالی و موازی و تبدیلهای ستاره – مثلث استفاده کرد.

نکتة مهم دیگر این است که قوانین کبرشهف را می توان برای جریانها و ولتاژهای حوزة s به کار برد. دلیل این امراین است  که بنا به خواص تبدیل عملیات، تبدیل لاپلاس مجموع چند تابع در حوزة زمان برابر مجموع تبدیل لاپلاسهای یکایک توابع است( جدول 15-2 را ببینید) بنابراین از آنجا که جمع جبری جریانها در یک گروه در حوزة زمان صفر است، جمع جبری جریانهای تبدیل شده نیز صفر خواهد بود. همچنین جمع جبری ولتاژهای تبدیل شده حول مسیری بسته صفر است. قوانین کیرشهف در حوزة s چنین اند.

...

 

فهرست مطالب

عنوان                                  صفحه

کاربرد تبدیل لاپالس در تحلیل مدار....... 1

16-1- مقدمه........................... 1

16-2- عناصر مدار در حوزة s............. 2

16-3- تحلیل مدار در حوزة s.............. 9

16-4 چند مثال تشریحی................... 10

16-5 تابع ضربه در تحلیل مدار........... 28

16-6 خلاصه............................. 46

17-5- تابع تبدیل و انتگرال کانولوشن... 48

 مراجع........................................... 64

...

 

62 ص فایل Word

 

 

 


دانلود با لینک مستقیم


دانلود مقاله کاربرد تبدیل لاپلاس در تحلیل مدار و انتگرال کانولوشن