حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

گاز و پلیمر

اختصاصی از حامی فایل گاز و پلیمر دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 75

 

غشاهای پلیمری شیرین ساز گاز طبیعی

گاز طبیعی عمدتا از متان تشکیل شده است، ولی هیدروکربن دیگر مانند اتان، پروپان و بوتان و دیگر ناخالصی ها نظیر دی اکسید کربن، سولفید هیدروژن، نیتروژن، بخار آب ، هلیوم و هیدروژن به مقدار کم نیز ممکن است در ترکیب گاز طبیعی وجود داشته باشند. وجود گازهای اسیدی مانند دی اکسید کربن و سولفید هیدروژن، بویژه در حضور بخار آب ، می تواند سبب بروز خوردگی در خطوط لوله انتقال گردد . بعلاوه ،‌سولفید هیدروژن یک گاز سمی است و گاز دی اکسید کربن نیز ارزش گرمایی ندارد و حذف آن باعث افزایش ارزش حرارتی گاز طبیعی خواهد شد .

به دلایل فوق ،‌گازهای اسیدی بایستی از گاز طبیعی جدا شوند . روش های گوناگونی برای دفع گازهای اسیدی و یا به عبارت دیگر شیرین سازی گاز طبیعی وجود دارند که جذب توسط حلال و یا در برخی از موارد فرآیند برتر در شیرین ساز گاز طبیعی به اثبات رسیده اند . آنها همچنین می توانند به عنوان یک فرآیند تکمیلی ( به صورت ترکیبی با واحد جذب ) بکار روند . با توجه به مزایای نسبی فرآیندهای غشایی در مقایسه با روش سنتی جذب توسط حلال ، کاربرد این روش در سال های اخیر در جهان رو به گسترش بوده است .

یکی دیگر از موضوعاتی که باعث رونق بیشتر این فناوری در عرصه جداسازی گاز شده است ، ظهور مواد پلمیری جدید برای ساخت غشاء و عرضه غشاهای تجاری با خواص عالی از این پلیمرها می باشد .

بنابراین ، موفقیت های تکنولوژی غشایی در زمینه جدا سازی گازها از یک سو و جایگاه ممتاز ایران از لحاظ دارا بودن ذخایر عظیم گاز از سوی دیگر باعث شدند تا در این تحقیق مطالعه ای بر روی غشاء های پلیمری شیرین سازی گاز طبیعی انجام گیرد . عملکرد آنها برای کاربرد بخصوص حذف گازهای اسیدی از متان مورد بررسی قرار گیرد . به دلیل اهمیت حذف دی اکسید کربن و سولفید هیدروژن نسبت به دیگر ناخالصی های موجود در گاز طبیعی غشاء های پلیمری که عمدتاً برای جداسازی این گازها مورد استفاده قرار می گیرند ، در دو بخش جداگانه معرفی شده اند .

غشاء های پلیمری جدا سازی گاز:

اغلب غشاهای مورد استفاده در جداسازی گازها، غشاهای پلیمری هستند .

غشاهای پلیمری خود شامل دو دسته پلیمرهای شیشه ای و لاستیکی هستند . غشاهای پلیمری شیشه ای عمدتاً از پلیمرهایی هستند که در دمایی پایین تر از دمای انتقال شیشه ای قرار دارند و در این دما کار می کنند . در این حالت غشاها تحرک مولکولی کمی داشته و سرعت نفوذ مولکولهای بزرگ از میان آنها کم است . در این نوع غشاء ها مولکولهای کوچکتر و متراکم تر ، تراوش پذیری بیشتری دارند .

غشاهای پلیمری لاستیکی ، در دمایی بالاتر از دمای انتقال شیشه ای کار می کنند . نرم و انعطاف پذیر هستند و جداسازی در این نوع غشاها بر اساس اختلاف انحلال پذیری اجزاء صورت می گیرد .

غشاء های پلیمری جداسازی دی اکسید کربن از گاز طبیعی:

اکثر غشاهای پلیمری که برای جداسازی گازی مورد استفاده قرار می گیرند، غشاهای مسطح‌ (صفحه ای ) یا فیبر تو خالی هستند . پلیمرهای لاستیکی، نفوذ پذیری بیشتری از خود نشان می دهند . اما انتخاب پذیری پلیمرهای شیشه ای برای مخلوط گازهای بیشتر است . همچنین بااعمال یک سری تغییرات در اسختار پلیمر می توان آن را برای جداسازی دی اکسید کربن ازگاز طبیعی مناسب تر کرد . پلیمرهای مهمی که در جداسازی در اکسید کربن از متان کاربرد دارند ، عبارتند از :‌

پلی استایرن

پلی آمید (نایلون )

پلی کربنات

پلی سولفون

استات سلولز

پلی اتر ایمید

پلی ایمید و ..

تراوایی دی اکسید کربن و گزینش پذیری آن نسبت به متان برای پلیمرهای مختلف در جدول 1 آورده شده است .

متداول ترین ماده مو.رد استفاده برای جداسازی گازی ، سلولز استات است . اما انتخاب پذیری این ماده برای مخلوط کم است (12 تا 15 ) این کاهش انتخاب پذیری به خطار پلاستیسیزاسونی است که در نتیجه تورم غشاء به واسطه حضور دی اکسید کربن و هیدروکربنهای سنگین روی می دهد ، که در بخشهای بعدی توضیح داده شده است به همین دلیل پلی ایمیدها که انتخاب پذیری مناسبی برای مخلوط دارند ، مورد توجه بسیار قرار گرفته اند . همچنین پلی ایمدیها خواص مکانیکی خوبی برای ایستادگی در مقابل فشار بالای خوراک دارند ک وجود هیدروکربنهای آروماتیک و سنگین روی کارکرد غشاهای پلی ایمیدی تاثیر منفی می گذارد .

غشاء های پلیمری جداسازی سولفید هیدروژن از گاز طبیعی:

عمده داده ها در زمنیه جدا سازی مربوط به غشاهای استات سلولز ، پلی ایمیدها ، پلی اتریورتان و پلی اتریورتان اوره و PEBAX® می باشند . همچنین غشاهایی از جنس پلی دی متیل سیلوکسان (PDMS) نیز


دانلود با لینک مستقیم


گاز و پلیمر

پلیمر،کاربردهای آن و انقلاب صنعتی

اختصاصی از حامی فایل پلیمر،کاربردهای آن و انقلاب صنعتی دانلود با لینک مستقیم و پر سرعت .

پلیمر،کاربردهای آن و انقلاب صنعتی


پلیمر،کاربردهای آن  و انقلاب صنعتی

مقالات  شیمی  با فرمت           DOC           صفحات  9

  بشر با تلاش برای دستیابی به مواد جدید, با استفاده از مواد آلی (عمدتا هیدروکربنها) موجود در طبیعت به تولید مواد مصنوعی نایل شد. این مواد عمدتا شامل عنصر کربن , هیدروژن, اکسیژن, نیتروژن و گوگرد بوده و به نام مواد پلیمری معروف هستند. مواد پلیمری یا مصنوعی کاربردهای وسیعی , از جمله در ساخت وسایل خانگی , اسباب بازیها, بسته بندیها , کیف و چمدان , کفش , میز و صندلی , شلنگها و لوله های انتقال أب , مواد پوششی به عنوان رنگها برای حفاظت از خوردگی و زینتی , لاستیکهای اتومبیل و بالاخره به عنوان پلیمرهای مهندسی با استحکام بالا حتی در دماهای نسبتا بالا در ساخت اجزایی از ماشین ألات, دارند.

پلیمرها خواص فیزیکی و مکانیکی نسبتا خوب و مفیدی دارند . أنها دارای وزن مخصوص پاییین و پایداری خوب در مقابل مواد شیمیایی هستند. بعضی از أنها شفاف بوده و می توانند جایگزین شیشه ها شوند. اغلب پلیمرها عایق الکتریکی هستند. اما پلیمرهای خاصی نیز وجود دارند که تا حدودی قابلیت هدایت الکتریکی دارند .


دانلود با لینک مستقیم


پلیمر،کاربردهای آن و انقلاب صنعتی

تحقیق: پلیمرهای مقاوم حرارتی

اختصاصی از حامی فایل تحقیق: پلیمرهای مقاوم حرارتی دانلود با لینک مستقیم و پر سرعت .

تحقیق: پلیمرهای مقاوم حرارتی


تحقیق: پلیمرهای مقاوم حرارتی

مقاله کامل بعد از پرداخت وجه

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 15

 

فهرست مطالب

عنوان:

تعریف پلیمر

پلیمر مقاوم حرارتی

پلاستیک- یک نوع از پلیمرها

منابع

 

تعریف:

پلیمرها، بخش عمده ای از مشتقات نفتی هستند که در انواع مختلف در صنعت پتروشیمی، تولید و در صنایع گوناگون مورد استفاده قرار می گیرند. امروزه استفاده از پلیمرها به اندازه ای رایج شده که می توان گفت بدونِ استفاده از آنها بسیاری از حوایج روزمره ما مختل خواهد شد.

پلیمر مقاوم حرارتی

هنگامی که ترکیبات آلی در دمای بالا حرارت داده می شوند، به تشکیل ترکیبات آروماتیک تمایل پیدا می کنند. بنابراین می توان نتیجه گرفت که پلیمرهای آروماتیک باید در مقابل دماهای بالا مقاوم باشند. انواع وسیعی از پلیمرها که واحد های تکراری آروماتیک دارند، در سالهای اخیر توسعه و تکامل داده شده اند. این پلیمرها در صنایع هوا- فضا مورد استفاده قرار می گیرند، زیرا در برابر دمای زیاد پایداری مطلوبی از خود نشان می دهند.

    برای این که یک پلیمر در برابر حرارت و در برابر گرما مقاوم تلقی شود، نباید در زیر دمای 400 درجه سانتی گراد تجزیه شود. هم چنین باید خواص مورد نیاز و سودمند خود را تا دماهای نزدیک به دمای تجزیه حفظ کند.

    این گونه پلیمرها دارای Tg بالا و دمای ذوب بالا هستند. پس می توان گفت پلیمرهای مقاوم حرارتی به پلیمرهایی گفته می شود که در دمای بالا بکار برده می شوند، به طوری که خواص مکانیکی، شیمیایی و ساختاری آنها، با خواص سایر پلیمرها در دماهای پایین متفاوت باشد.

    پلیمرهای مقاوم حرارتی به طور عمده در صنایع اتومبیل سازی، صنایع هوا- فضا، قطعات الکترونیکی، عایق ها، لوله ها، انواع صافی ها، صنایع آشپزی و خانگی، چسب ها و پوشش سیم های مخصوص مورد استفاده قرار می گیرد.

    پلیمرهای یاد شده هم به روش آلی و هم به روش معدنی تهیه می شوند. ذکر این نکته مهم است که روش آلی متداول تر و اغلب پژوهش ها توسط دانشمندان پلیمر در این زمینه ها به ثمر رسیده است.

        پایداری حرارتی

    پایداری حرارتی پلیمرها، تابع فاکتورهای گوناگونی است. از آنجا که مقاومت حرارتی تابعی از انرژی پیوندی است، وقتی دما به حدی برسد که باعث شود پیوندها گسیخته شوند، پلیمر از طریق انرژی ارتعاشی شکسته می شود. پس پلیمرهایی که دارای پیوند ضعیفی هستند در دمای بالا قابل استفاده نیستند و از بکار بردن منومرها و هم چنین گروه های عاملی که باعث می شود این پدیده تشدید شود، باید خودداری کرد. البته گروه هایی مانند اتر یا سولفون، نسبت به گروه هایی مانند آلکیل و NH و OH پایدارتر هستند، ولی وارد کردن گروه هایی مانند اتروسولفون و یا گروههای پایدار دیگر صرفاً بخاطر بالا بردن مقاومت حرارتی نیست، بلکه باعث بالا رفتن حلالیت نیز می شوند.

تاثیرات متقابلی که بین دو گونه پلیمری وجود دارد، ناشی از تاثیرات متقابل قطبی- قطبی، و پیوند هیدروژنی (6-10 Kcal/mol) است که باعث بالا رفتن مقاومت حرارتی در پلیمرها می شوند. این قبیل پلیمرها باید قطبی و دارای عامل هایی باشند که پیوند هیدروژنی را بوجود آورند، مانند: پلی ایمیدها و پلی یورتانها.


دانلود با لینک مستقیم


تحقیق: پلیمرهای مقاوم حرارتی

کیتوسان یک پلیمر طبیعی

اختصاصی از حامی فایل کیتوسان یک پلیمر طبیعی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 12

 

به نام خدا

Modificationof natural polymers : Chitosan

کیتوسان یک پلیمر طبیعی است که در مهندسی بافت کاربرد دارد . زیرا زیست تخریب پذیرو زیست سازگار بوده و ساختاری شبیه به lgcosaminoglycan دارد .

کیتوسان حتی به شکل اسکفولدها مختلخل وهیدروژل و فیبر و icrosphere ساخته می شود استفاده کیتوسان در بافت های مختلفی نظیر ک استخوان - کبد – شبکه عصبی – عروق خونی – غضروف و پوست همچنین کیتوسان برای رهایش پروتئین ها مانند فاکتورهای رشد نیز بکارمی رود .

کیتین دومین پلیمر طبیعی فراوان در طبیعیت عداز سلولز است جز اصلی پوست سخت پوستان و میگوها را تشمیل می دهد .

کیتوسان می تواند در رنج وسیعی از وزن های مولکولی و درجات deacetyalation تهیه می شود . کیتوسان در محلول خنثی نا محلول است مانند گلوتامیک اسید ، هیدروکلریک اسید ، لاکتیک اسید ، استیک اسید ، فرمیک اسید و بوتیریک اسید ل می شود .

بنابراین اسکفولوهاو وسایلایش سپروتئین که از کپیوسان ساخته می شوند حت شرایط راحتتری از PLGA ساخته می شوند چون PLGA نیاز به حلال های ارگانیک دارد مثل تیلن کلرید .

بار مثبت داشتن کیتوسان باعث می شوند که بتواند برای رهایشبارهای منفی نظیر پروتئین های اسیدی DNA,glycosaminoglycan از آن استفاده کرد.

کتیوسان برای ترمیم زخم های باز کاربرد زیادی دارد . کیتوسان سرعت بهبود زخم های باز فزایش می دهد و کیتوسان سرعت نفوذ (PMN)polymarphnuclear را افزایش داده و کلاژن بیشتری از فیبروبلاست تولیدمی کند .

آماده سازی اسکفولوهای یتوسانی :

برای آماده سازی اسکفولاهای کیتوسازی و کیتین در مهندسی بافت از تکنیک Freeze-dryاستفاده می شود اثر شرایط Freeze –dry روی سایز و شکل تخلخل ها بررسی شده است .

محلول 1 تا 3 درصد کیتوسان در 2/0 مول اسید استیک آماده شد سپس 3 تا 5 میلی متر از این محلول در لولة صاف و صیغلی ریخته شده و تا 20- یا 78- یا 196- درجة سانتی گراد سرد کرده ودر همین حالت توسط اوله صاف و صیغلی ریختهشده . سپس اسکفولدها با هیدروکسید سدیم تااتانول خیش شده تابا خارح شده استات اکفولد ه صورت پایدار در بیاید . سپس با SEM سایز حفرات دیده شد که خطر حفرات بین 40 تا 250میکرومتر تغیر کرده در دماهای مختلف سرد کردن.

در بررسی های دیگر اثر پیوندهای شبکه ای گلوتا را لدئیذ روی شکل اسکفولدهای کیتوسانی بررسی شده .

به طورخلاصه ، 5/2 درصد وزنی از کستوسان در 1 درصد اسید استیک حل شد . گلوتارالوئید بامیزان 33 را درصد غلظت وزنی کیتوسان اضافه شد واجازه داده شده که درهای محیط به مدت 24 ساعت قبل از خشک کردن در خلاء واکنش دهد و به این ترتیب اسکولد متخلخل حاصل می شود .


دانلود با لینک مستقیم


کیتوسان یک پلیمر طبیعی

دانلود مقاله کامل درباره کیتوسان یک پلیمر طبیعی

اختصاصی از حامی فایل دانلود مقاله کامل درباره کیتوسان یک پلیمر طبیعی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

به نام خدا

Modificationof natural polymers : Chitosan

کیتوسان یک پلیمر طبیعی است که در مهندسی بافت کاربرد دارد . زیرا زیست تخریب پذیرو زیست سازگار بوده و ساختاری شبیه به lgcosaminoglycan دارد .

کیتوسان حتی به شکل اسکفولدها مختلخل وهیدروژل و فیبر و icrosphere ساخته می شود استفاده کیتوسان در بافت های مختلفی نظیر ک استخوان - کبد – شبکه عصبی – عروق خونی – غضروف و پوست همچنین کیتوسان برای رهایش پروتئین ها مانند فاکتورهای رشد نیز بکارمی رود .

کیتین دومین پلیمر طبیعی فراوان در طبیعیت عداز سلولز است جز اصلی پوست سخت پوستان و میگوها را تشمیل می دهد .

کیتوسان می تواند در رنج وسیعی از وزن های مولکولی و درجات deacetyalation تهیه می شود . کیتوسان در محلول خنثی نا محلول است مانند گلوتامیک اسید ، هیدروکلریک اسید ، لاکتیک اسید ، استیک اسید ، فرمیک اسید و بوتیریک اسید ل می شود .

بنابراین اسکفولوهاو وسایلایش سپروتئین که از کپیوسان ساخته می شوند حت شرایط راحتتری از PLGA ساخته می شوند چون PLGA نیاز به حلال های ارگانیک دارد مثل تیلن کلرید .

بار مثبت داشتن کیتوسان باعث می شوند که بتواند برای رهایشبارهای منفی نظیر پروتئین های اسیدی DNA,glycosaminoglycan از آن استفاده کرد.

کتیوسان برای ترمیم زخم های باز کاربرد زیادی دارد . کیتوسان سرعت بهبود زخم های باز فزایش می دهد و کیتوسان سرعت نفوذ (PMN)polymarphnuclear را افزایش داده و کلاژن بیشتری از فیبروبلاست تولیدمی کند .

آماده سازی اسکفولوهای یتوسانی :

برای آماده سازی اسکفولاهای کیتوسازی و کیتین در مهندسی بافت از تکنیک Freeze-dryاستفاده می شود اثر شرایط Freeze –dry روی سایز و شکل تخلخل ها بررسی شده است .

محلول 1 تا 3 درصد کیتوسان در 2/0 مول اسید استیک آماده شد سپس 3 تا 5 میلی متر از این محلول در لولة صاف و صیغلی ریخته شده و تا 20- یا 78- یا 196- درجة سانتی گراد سرد کرده ودر همین حالت توسط اوله صاف و صیغلی ریختهشده . سپس اسکفولدها با هیدروکسید سدیم تااتانول خیش شده تابا خارح شده استات اکفولد ه صورت پایدار در بیاید . سپس با SEM سایز حفرات دیده شد که خطر حفرات بین 40 تا 250میکرومتر تغیر کرده در دماهای مختلف سرد کردن.

در بررسی های دیگر اثر پیوندهای شبکه ای گلوتا را لدئیذ روی شکل اسکفولدهای کیتوسانی بررسی شده .

به طورخلاصه ، 5/2 درصد وزنی از کستوسان در 1 درصد اسید استیک حل شد . گلوتارالوئید بامیزان 33 را درصد غلظت وزنی کیتوسان اضافه شد واجازه داده شده که درهای محیط به مدت 24 ساعت قبل از خشک کردن در خلاء واکنش دهد و به این ترتیب اسکولد متخلخل حاصل می شود .

ر یک بررسی دیگر ماتریس متخلخل کیتین ساخته شد . کیتین در محلول 5 درصد لیتیم لرید – دی میتل استامید با غلظت 5/0 درصد وزنی حل می شود. تقریباٌ 100 میلی متر از این محلول 3/0 تا 3 گرم کلسیم کربنات به صورت محلول سوسپانسیون در می آید . به این محلول اجازه داده می شود که برای دو روز تبخیر شود و محصول آن ژل کتنین – کلسیم کربنات ت سپس این ژل در دمای اتاق و به مدت 2 ساعت در مجاور HCL قرار داد . می شود تا دی اکسید کربن تولید کند . سپس ژل با آب شسته شده تا حلال های باقی مانده خارج شده و سپس در هوا خشک می شود . نتیجه روش اسکفولد کیتینی با سایز خطرات بین 100 تا 1000 میکرو متر است .

فرمولاسیون برای کاربردهای مهندسی بافت :

کیتوسان با فرمولاسیون های مختلف برای بافت هایمختلف استفاده می شود نظیر : ستخوان – پوست غضروف – کبد – شبکه عصبی – عروق خونی .

استخوان :

کیتوسان یا صورت وسیع برای مهندسی یافت استخوان استفاده می شود . خاصیت هداست سلول های استخوانی در کلیدسان وجود دارد .

سلول های بنیادی مغز استخوان در حضور کیتوسان بیشتر به سلول های استئوپلاست تبدیل می شوند تا درغیاب کیتوسان .

کیتوسان هدایت سلول های استخوان ساز را در محیط invivo افزایش می دهد از طریق گول زدن فاکتورهای رشد سدر محل زخم . در یک تحقیق Tamura و yoshihara از کامپوزیت کربوکسی متیل – کیتین هیدروکسی آپتیت برای ساخت اسکفولدهای ترمیمی استخوان استفاده کردند .


دانلود با لینک مستقیم


دانلود مقاله کامل درباره کیتوسان یک پلیمر طبیعی