حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق طیف اتم

اختصاصی از حامی فایل دانلود تحقیق طیف اتم دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق طیف اتم


دانلود تحقیق طیف اتم

دسته بندی : علوم پایه _ فیزیک ،

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

تعداد صفحات : 17 صفحه

آزمایش ریدبرگ: گزیده ای از ریدبرگ: متولد:8 نوامبر 1854 در هالمشتد سوئد وفات:28 دسامبر 1919 در لوند سوئد پدرژوهانس رید برگ اس ون ریدبرگ،و مادرش ماریا اندرسون بود.
ژوهانس مدرسه را در ساحل شرقی کاتگات واقع درجنوب غربی سوئد در نیسان،در هالشتد، شروع کرد.
او در سال 1873 دوران راهنمایی و دبیرستان را در ژیمناسیوم واقع در هالشتتد کامل کرد و در همان سال وارد دانشگاه لوند شد.
دانشگاه لوند در شهر لوند در قسمت جنوبی سوئد و در شمال شرقی مالمو،دومین دانشگاه قدیمی در سوئد است که در 1666 تاسیس شده است.
ریدبرگ مدرک لیسانسش را در 1875 از دانشگاه لوند دریافت نمود.
او در ریاضیات ادامه تحصیل داد و مقاله اش را که روی بخش های مخروطی بود برای دکترایش در ریاضیات،انجام داد که در سال 1879 به آن جایزه دادند.
سال بعد او به عنوان مقام دانشیار ریاضیات در لوند انتخاب شد اما اکنون علایق او تمایل به ریاضیات فیزیکی داشت تا ریاضیات محض.
او طی دو سال که به عنوتن دانشیار ریاضیات بود،روی مسائل مربوط به الکتریسیته کار کرد.
ریدبرگ در 1882 از مقام دانشیاری ریاضی به دانشیاری فیزیک در لوند تغییر سمت داد.
ده سال بعد او به عنوان مدیر تولید انیستیتو فیزیک ارتقا مقام یافت.
او در 1879 به مقام پرفسوری در فیزیک نائل شد اما به صورت موقت تا زمانیکه در مارچ 1901 به صورت مدرک دائمی تثبیت شد.
از این زمان تا زمان باز نشستگی وی در سال 1919 اوکرسی دار فیزیک بود.
گرچه در این زمان سلامتی اش رو به زوال بود،و در سال 1914 به طور جدی بیمار شد.
اما نهایتا او کار را در سال 1914 بدرود گفت و آن مقام را ترک کرد و ازآن به بعد به دانشگاه نیامد.
بازنشستگی آخر وی 5 سال بعد که توان کار کردن را ئاشت بود که دست از کار کشید و این تنها چند هفته قبل از مرگ وی بود که می آمد.
مانه زی بان،کسی که از 1906 تا 1911 دانش آموز ریدبرگ بود،سپس مدیر ریدبرگ از 1911تا 1914 ،مسئولیت تدریسی وی در 1914 به عهده گرفت و این ها را تا 1919 که به طور رسمی بازنشسته شد انجام داد.
سپس نزدیکی 1920 وی عهده دار کرسی فیزیک ریدبرگ گردید.
  متن بالا فقط تکه هایی از محتوی متن مقاله میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین ،فایل را فورا دانلود نمایید 

 

 


  لطفا به نکات زیر در هنگام خرید دانلود مقاله :  توجه فرمایید.

  • در این مطلب،محتوی متن اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در ورد وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید.
  • پس از پرداخت هزینه ،ارسال آنی مقاله یا تحقیق مورد نظر خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد.
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل متن میباشد ودر فایل اصلی این ورد،به هیچ وجه بهم ریختگی وجود ندارد.
  • در صورتی که محتوی متن ورد داری جدول و یا عکس باشند در متون ورد قرار نخواهند گرفت.
  • هدف اصلی فروشگاه ، کمک به سیستم آموزشی میباشد.

دانلود فایل   پرداخت آنلاین 


دانلود با لینک مستقیم


دانلود تحقیق طیف اتم

تحقیق درباره طیف سنجی نشری قوس و جرقه

اختصاصی از حامی فایل تحقیق درباره طیف سنجی نشری قوس و جرقه دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 37

 

طیف سنجی نشری قوس و جرقه

در منابع قوس و جرقه تقریباً امکان برانگیختن همه عناصر پایدار در جدول تناوبی وجود دارد.

تخلیه قوس و جرقه به عنوان منابع برانگیختگی از دهه 1920 برای طیف سنجی نشری وکیفی و کمی استفاده شده است. بسیاری از پیشرفت های نوین برانگیختگی قوس و جرقه در طی سالهای جنگ، دهه 1940 به ویژه در پروژة منهتان اتفاق افتاد.

در منبع قوس dc ، 70 تا 80 عنصر برانگیخته می شود. کاربرد اصلی قوس، برای تجزیه کیفی و نیمه کمی است، زیرا دقت اندازه گیری های کمی چندان مطلوب نیست. منبع جرقة‌ ولتاژ بالا، پر انرژی تر از قوس است؛ حتی گازهای نادر و هالوژن ها در تخلیه الکتریکی جرقه می‌توانند برانگیخته شوند. دقت جرقه بیشتر از قوس dc است و برای اندازه گیری های کمی برتری دارد.

منابع برانگیختگی قوس

در این بخش مشخصه ها، مزایا و محدودیت های انواع گوناگونی از تخلیه های قوس نظیر قوس dc ، قوس ac ، قوس با اتمسفر کنترل شده و قوس پایدار شده با گاز مورد توجه قرار می‌گیرند.

قوس که در تجزیه طیف شیمیایی به کار می رود، تخلیه دی الکتریکی بین دو یا چند الکترود هدایت کننده است. یکی از الکترودها ،‌حاوی پودر نمونه، مخلوط جامد یا پس ماندة محلول است. شدت نشر در کل زمان قوس زنی که سوزاندن نامیده می شود، به صورت فوتوگرافیکی یا الکترونیکی انتگرال گیری می شود. قوس می تواند در هوا یا اتمسفری از گاز بی اثر آزادسوز باشد، یا به وسیله گاز پایدار شود. قوس های آزادسوز بیشتر برای تجزیه های طیف شیمیایی به کار گرفته می شوند. سه نوع قوس مورد استفاده قرار می گیرد: قوس dc ، قوس ac و قوس نوبتی یا تک جهتی.

قوس های dc آزاد سوز

معمولی ترین نوع قوس بکار گرفته شده در تجزیه طیف شیمیایی قوس dc است؛ که بطور مرسوم با آشکارپذیری و دقت کم مشخص می شود. گر چه در تخلیة قوس، یونش اساساً وجود دارد اما خطوط نشری اتم های خنثی برتری دارند. در واقع خطوط اتم خنثی، اغلب خطوط قوس نامیده می شوند؛ یا به عنوان خطوط نوع (I) در نامگذاری طیف بینی خوانده می شوند. بنابراین خط آرگون (I) ، خط آرگون خنثی است.

قوس dc از تخلیه پیوسته 1 تا 30 آمپری بین یک جفت الکترود فلزی یا گرافیتی حاصل میشود. دیاگرام ساده شدة مدار الکتریکی در شکل 9-1 نشان داده شده است.

قوس بیشتر مقاومت منفی از خود نشان می دهد، چون افزایش جریان قوس منجر به افت ولتاژ در گاف و کاهش در مقاومت قوس خواهد شد.

با افزایش یافتن رسانایی قوس، جریان باید بدون محدودیت افزایش یابد. کنترل صحیح جریان به سوزاندن یکنواخت کمک می کند و شدت های نشر تکرارپذیری ایجاد می‌شود. برای تنظیم بهتر جریان ولتاژ اعمال شده باید بزرگتر از افت ولتاژی باشد که در دو سر قوس اتفاق می افتد.

معمولی ترین ماده الکترود، گرافیت است. گرچه گاهگاهی خود نمونه های فلزی به شکل مناسب درآورده شده و به عنوان الکترود استفاده می شوند. گرافیت ارزان و باخلوص بالا در دسترس است، همچنین در برابر حملة بیشتر واکنش گرها مقاوم و نیز ماده ای دیرگداز است.

اغلب نمونه هایی که باید تجزیه شوند جامدند، پودرها، تراشه ها و براده های متداول‌اند. به طور کلی نمونه ها با تبخیر از الکترود فنجانی شکل (الکترود پایینی ) که شبیه یکی از الکترودهایی است که در تصویر 9-3 نشان داده شده اند وارد قوس می شوند.

برای ایجاد قوس یا الکترودها لحظه ای به هم برخورد می کنند یا مولد جرقه ای با جریان الکتریکی پایین امکان یونش اولیه را مهیا می سازد. با یونش گرمایی مواد موجود در گاف‌ و تأمین الکترونها و یونها از الکترودها ، قوس برقرار می شود.

در آمریکا، معمولا در قوس، الکترود نمونه به عنوان آند و الکترود مخالف به عنوان کاتد عمل می کند. نمونه برداری کاتدی بیشتر در اروپا استفاده می شود. با نمونه برداری آندی، میدان رو به بالا بر مواد یونیده اثر می گذارد. فقط غلظت نسبتاً پایینی از مواد یونیده در ستون قوس وجود دارد و بخار کمی به وسیله نفوذ جانبی خارج می شود. در برانگیختگی کاتدی، بخارات یونیده در معرض نیروهای رو به پایین در ستون قرار می گیرند. نتیجة این امر غلظت پایین در ستون و انباشتگی ذرات فلزی در کاتد است، که به لایة کاتدی معروف است. گاهی برانگیختگی کاتدی برای کاهش حد آشکارسازی مطلق استفاده می شود که به دلیل افزایش نشر در لایة کاتدی است. با این حال، نشر زمینة شدیدی نیز در ناحیه لایه کاتدی یافته می شود و نسبتهای علامت به زمینه ممکن است بهتر از نمونه برداری آندی، نباشد. در قوس های آزادسوز، زمان گذار به اندازه‌ی ‌چند میلی ثانیه است.

به طور معمول دمای قوس در محدودة 3000 تا k 8000 است و تقریباً به طور خطی به پتانسیل یونش ماده، در ناحیه گاف بستگی دارد. در جریان ثابت به دلیل اتلاف انرژی، دمای قوس با مقاومت پلاسمای قوس متناسب خواهد بود. با موادی که به راحتی یونیده می‌شوند، چگالی الکترون درگاف زیاد است، بنابراین مقاومت بین الکترودها کم و در نتیجه دما پایین است. به طور مشابه،‌موادی با پتانسیل یونش بالا ، منجر به دمای بالا می شوند. وابستگی دمای قوس به ماهیت نمونه، کاملا نامطلوب است و اغلب به اثرات


دانلود با لینک مستقیم


تحقیق درباره طیف سنجی نشری قوس و جرقه

مقاله فیزیک گرایش جامدات ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی

اختصاصی از حامی فایل مقاله فیزیک گرایش جامدات ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی دانلود با لینک مستقیم و پر سرعت .

مقاله فیزیک گرایش جامدات ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی


مقاله فیزیک گرایش جامدات ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی

این محصول در قالب ورد و قابل ویرایش در 119 صفحه می باشد.

 چکیده:

در این مقاله ، ساختارهای مختلف لیزر نیمه هادی و خروجی آنها مورد بررسی قرار گرفته است و عوامل موثر بر این خروجی ها همچون جریان آستانه و تلفات اپتیکی بیان شده است. در نهایت با استفاده از طیف های دیود لیزری طول کاواک لیزر محاسبه شده است.

ساختار دیود لیزری از 5 لایه رونشستی توسط دستگاه LPE تهیه شده است که ضخامت لایة میانی یا لایة فعال برابر 05/0 میکرون می باشد. چگالی ناخالصی توسط دستگاه SIMS مورد بررسی قرار گرفته است که نشان می دهد چگالی ناخالصی در عرض لایه رونشستی کاملاً یکنواخت است و ضخامت لایه ها از 8 میکرون تا 05/0 میکرون به وسیله دستگاه AFM اندازه گیری شده است. شدت جریان آستانه در حدود A/cm2 70 برای تراشه ای به طول و عرض 200*300 میکرون محاسبه شده است. مدهای ظاهر شده در شدت جریان بالاتر از آستانه، Ith ، کاملاً مشهود است که نشان می دهد دیود ساخته شده پرتو لیزری از خود تابش می کند. در نهایت با استفاده از رابطه  طول کاواک برای طیف‌های به دست آمده محاسبه شده که مقدار 206 میکرون به دست آمده است که با مقدار تجربی 6% خطا وجود دارد.

فهرست مطالب

عنوان                                                     صفحه

چکیده

فصل اول

مقدمه ای بر لیزر (مبانی لیزر)

مقدمه........................................ 2

هدف.......................................... 3

شباهت و تفوت لیزر نیمه هادی با سایر لیزرها... 4

1-1- خواص بار یکه لیزر........................ 5

1-2- انواع لیزر............................... 7

1-3- وارونی انبوهی ........................... 9

1-3-1- برهمکنش امواج الکترومغناطیسی با اتم.... 12

1-3-2- فرایندهای تاثیرگذار بر غلظت اتمها در حالت های مختلف   13

1-3-3- بررسی احتمال گذارها و معادلات تعادلی.... 14

1-4- پهن شدگی طیفی و انواع آن................. 15

1-5- انواع کاواک نوری (فیدبک)................. 19

1-6- برهم نهی امواج الکترومغناطیسی............ 22

1-6-1- فاکتور کیفیت برای ابزارهای نوری Q ..... 24

1-6-2- انواع تشدیدگرهای نوری و کاربرد آن...... 25

 


فصل دوم

لیزر نیمه هادی و انواع ساختار آن

2-1- مواد نیمه هادی........................... 27

2-2- بازده گسیل خودبخودی...................... 30

2-3- انواع بازترکیب........................... 31

2-4- گاف انرژی و انواع آن..................... 33

2-5- وارونی انبوهی و روش پمپاژ در لیزر نیمه هادی 35

2-6- اتصال p- n اولین تحقق لیزر نیمه هادی ...... 37

2-7- انواع ساختارها........................... 39

2-7-1- روشهای گسیل نور در لیزر نیمه هادی...... 40

2-7-2- لیزر با ساختار تخت..................... 40

2-7-3- مشکلات لیزر پیوندی همجنس................ 41

2-7-4- لیزرهای پیوندی غیرهمجنس................ 42

2-7-5- رابطه جریان و خروجی در لیزر تخت........ 43

2-8- ساختار DFB............................... 44

2-8-1- طیف خروجی از لیزر DFB.................. 45

2-9- تاثیرات دما به طیف گسیلی ساختارها........ 46

2-10- مختصری راجع به بحث نوری................. 48

2-11- لیزرهای نیمه هادی و دیودهای نور گسیل.... 51

2-12- جریان آستانه – خروجی.................... 55

2-13- روشهای بهبود و افزایش بازده کوانتومی داخلی 57

2-14- لزوم اتصالات اهمی........................ 58

فصل سوم

طیف خروجی لیزر نیمه هادی و عوامل مؤثر بر آن

3-1- تغییرات چگالی جریان آستانه و فشار هیدروستاتیکی 61

3-2- واگرایی پرتو خروجی....................... 62   

3-3- خروجی ساختارها........................... 63

3-4- محاسبه پهنای طیف در لیزرهای نیمه هادی در ساختارهای مختلف 65

3-5- انواع پهنای طیف.......................... 69

3-6- کوک پذیری لیزر نیمه هادی................. 73

3-7- روابط و معادلات مهم در تولید و بازترکیب حاملها   75

3-8- بهره در حالت پایا و جریان آستانه......... 79

3-9- اهمیت کاواک لیزر......................... 84   

3-10- مدهای تولید شده در داخل کاواک........... 89

3-11- تفاوت اساسی مدهای طولی و عرضی........... 92

 

فصل چهارم

بررسی و تحلیل طیف های خروجی (کارهای تجربی)

پیشنهادات و نتایج

4-1- انواع اتصال دیود و طیف خروجی............. 97

4-2- تحلیل مشخصه های لیزر نیمه هادی........... 98   

  • مشخصه ولتاژ- جریان (V- I)...................... 98
  • مشخصه جریان- مقاومت دینامیکی  ...... 101
  • مشخصه جریان- توان (P- I)....................... 102
  • مشخصه جریان- راندمان کوانتومی دیفرانسیلی 103
  • مشخصه توان طول موج ................... 103

نمودارهای تجربی......................... 104

4-3- نتایج.................................... 112

پیشنهادات.................................... 115

منابع فارسی.................................. 116

منابع لاتین................................... 117

   


دانلود با لینک مستقیم


مقاله فیزیک گرایش جامدات ارتباط بین طیف خروجی و کاواک در لیزر نیمه هادی

دانلود تحقیق اصول طیف سنجی جرمی

اختصاصی از حامی فایل دانلود تحقیق اصول طیف سنجی جرمی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

اصول طیف سنجی جرمی ، جلوتر از هر یک از تکنیکهای دستگاهی دیگر ، بنا نهاده شده است. تاریخ پایه گذاری اصول اساسی آن به سال 1898 بر می‌گردد. در سال 1911 ، "تامسون" برای تشریح وجود نئون-22 در نمونه‌ای از نئون-20 از طیف جرمی استفاده نمود و ثابت کرد که عناصر می‌توانند ایزوتوپ داشته باشند. تا جایی که می‌دانیم، قدیمیترین طیف سنج جرمی در سال 1918 ساخته شد.اما روش طیف سنجی جرمی تا همین اواخر که دستگاههای دقیق ارزانی در دسترس قرار گرفتند، هنوز مورد استفاده چندانی نداشت. این تکنیک با پیدایش دستگاههای تجاری که بسادگی تعمیر و نگهداری می‌شوند و با توجه به مناسب بودن قیمت آنها برای بیشتر آزمایشگاههای صنعتی و آموزشی و نیز بالا بودن قدرت تجزیه و تفکیک ، در مطالعه تعیین ساختمان ترکیبات از اهمیت بسیاری برخوردار گشته است.

اصول طیف سنجی جرمی

به بیان ساده ، طیف سنج جرمی سه عمل اساسی را انجام می‌دهد:

 

مولکولها توسط جرایاناتی از الکترونهای پرانرژی بمباران شده و بعضی از مولکولها به یونهای مربوطه تبدیل می‌گردند. سپس یونها در یک میدان الکتریکی شتاب داده می‌شوند.

یونهای شتاب داده شده بسته به نسبت بار/جرم آنها در یک میدان مغناطیسی یا الکتریکی جدا می‌گردند.

یونهای دارای نسبت بار/جرم مشخص و معین توسط بخشی از دستگاه که در اثر برخورد یونها به آن ، قادر به شمارش آنها است، آشکار می‌گردند. نتایج داده شده خروجی توسط آشکار کننده بزرگ شده و به ثبات داده می‌شوند. علامت یا نقشی که از ثبات حاصل می‌گردد یک طیف جرمی است، نموداری از تعداد ذرات آشکار شده بر حسب تابعی از نسبت بار/جرم.

دستگاه طیف سنج جرمی

هنگامی که هر یک از عملیات را بدقت مورد بررسی قرار دهیم، خواهیم دید که طیف سنج جرمی واقعا پیچیده‌تر از آن چیزی است که در بالا شرح داده شد.

سیستم ورودی نمونه

قبل از تشکیل یونها باید راهی پیدا کرد تا بتوان جریانی از مولکولها را به محفظه یونیزاسیون که عمل یونیزه شدن در آن انجام می‌گیرد، روانه ساخت. یک سیستم ورودی نمونه برای ایجاد چنین جریانی از مولکولها بکار برده می‌شود. نمونه‌هایی که با طیف سنجی جرمی مورد مطالعه قرار می‌گیرند، می‌توانند به حالت گاز ، مایع یا جامد باشند. در این روش باید از وسایلی استفاده کرد تا مقدار کافی از نمونه را به حالت بخار در آورده ، سپس جریانی از مولکولها روانه محفظه یونیزاسیون شوند.در مورد گازها ، ماده ، خود به حالت بخار وجود دارد. پس ، از سیستم ورودی ساده‌ای می‌توان استفاده کرد. این سیستم تحت خلاء بوده، بطوری که محفظه یونیزاسیون در فشاری پایینتر از سیستم ورودی نمونه قرار دارد.

روزنه مولکولی

نمونه به انبار بزرگتری رفته که از آن ، مولکولهای بخار به محفظه یونیزاسیون می‌روند. برای اطمینان از اینکه جریان یکنواختی از مولکولها به محفظه یونیزاسیون وارد می‌شود، قبل از ورود ، بخار از میان سوراخ کوچکی که "روزنه مولکولی" خوانده می‌شود، عبور می‌کند. همین سیستم برای مایعات و جامدات فرار نیز بکار برده می‌شود. برای مواد با فراریت کم ، می‌توان سیستم را به گونه‌ای طراحی کرد که در یک اجاق یا تنور قرار گیرد تا در اثر گرم کردن نمونه ، فشار بخار بیشتری حاصل گردد. باید مراقب بود که حرارت زیاد باعث تخریب ماده نگردد.در مورد مواد جامد نسبتا غیر فرار ، روش مستقیمی را می‌توان بکار برد. نمونه در نوک میله‌ای قرار داده می‌شود و سپس از یک شیر خلاء ، وارد محفظه یونیزاسیون می‌گردد. نمونه در فاصله بسیار نزدیکی از پرتو یونیزه کننده الکترونها قرار می‌گیرد. سپس آن میله ، گرم شده و تولید بخاری از نمونه را کرده تا در مجاورت پرتو الکترونها بیرون رانده شوند. چنین سیستمی را می‌توان برای مطالعه نمونه‌ای از مولکولهایی که فشار بخار آنها در درجه حرارت اتاق کمتر از 9 - 10 میلیمتر جیوه است، بکار برد.

محفظه یونیزاسیون

هنگامی که جریان مولکولهای نمونه وارد محفظه یونیزاسیون گشت ، توسط پرتوی از الکترونهای پرانرژی بمباران می‌شود. در این فرآیند ، مولکولها به یونهای مربوطه تبدیل گشته و سپس در یک میدان الکتریکی شتاب داده می‌شوند. در محفظه یونیزاسیون پرتو الکترونهای پرانرژی از یک "سیم باریک" گرم شده ساطع می‌شوند. این سیم باریک تا چند هزار درجه سلسیوس گرم می‌شود. به هنگام کار در شرایطی معمولی ، الکترونها دارای انرژی معادل 70 میکرون - ولت هستند.این الکترونهای پرانرژی با مولکولهایی که از سیستم نمونه وارد شده‌اند، برخورد کرده و با برداشتن الکترون از آن مولکولها ، آنها را یونیزه کرده و به یونهای مثبت تبدیل می‌کنند. یک "صفحه دافع" که پتانسیل الکتریکی مثبتی دارد، یونهای جدید را به طرف دسته‌ای از "صفحات شتاب دهنده" هدایت می‌کند. اختلاف پتانسیل زیادی (حدود 1 تا 10 کیلو ولت) از این صفحات شتاب دهنده عبور داده می‌شود که این عمل ، پرتوی از یونهای مثبت سریع را تولید می‌کند. این یونها توسط یک یا چند "شکاف متمرکز کننده" به طرف یک پرتو یکنواخت هدایت می‌شوند.بسیاری از مولکولهای نمونه به هیچ وجه یونیزه نمی‌شوند. این مولکولها بطور مداوم توسط مکنده‌ها یا پمپ های خلا که به محفظه یونیزاسیون متصل نیستند، خارج می‌گردند. بعضی از این مولکولها از طریق جذب الکترون به یونهای منفی تبدیل می‌شوند. این یونهای منفی توسط صفحه دافع جذب می‌گردند. ممکن است که بخش کوچکی از یونهای تشکیل شده بیش از یک بار داشته باشند، (از دست دادن بیش از یک الکترون) اینها مانند یونهای مثبت تک ظرفیتی ، شتاب داده می‌شوند.

پتانسیل یونیزاسیون

انرژی لازم برای برداشتن یک الکترون از یک اتم یا مولکول ، پتانسیل یونیزاسیون آن است. بسیاری از ترکیبات آلی دارای پتانسیل یونیزاسیونی بین 8 تا 15 الکترون ولت هستند. اما اگر پرتو الکترونهایی که به مولکولها برخورد می‌کند، پتانسیلی معادل 50 تا 70 الکترون ولت نداشته باشد، قادر به ایجاد یونهای زیادی نخواهد بود. برای ایجاد یک طیف جرمی ،


دانلود با لینک مستقیم


دانلود تحقیق اصول طیف سنجی جرمی

تحقیق طیف نگاری UV, FTIR, IR

اختصاصی از حامی فایل تحقیق طیف نگاری UV, FTIR, IR دانلود با لینک مستقیم و پر سرعت .

تحقیق طیف نگاری UV, FTIR, IR


تحقیق طیف نگاری UV, FTIR, IR

دسته بندی : علوم پایه  _ فیزیک

فرمت فایل:   doc قابلیت ویرایش ) 

حجم فایل:  (در قسمت پایین صفحه درج شده)

تعداد صفحات : 31 

کد محصول : 1Ph

 

 

 

 

فهرست متن Title 

 

قسمتی از محتوای متن :

 

طیف نگاری UV, FTIR, IR

موضوعات مورد بررسی در این سمینار، خصوصیات پرتوهای IR,UV و وسایل طیف نگاری است و همچنین کاربرد این پرتوها به عنوان آنالیز سطوح بر روی مواد می باشد.

فصل 1

 

1-1) خصوصیات و ویژگی های پرتو UV (وراء بنفش)

 

اشعه واراء بنفش بدسته ای از امواج الکترو مغناطیس اطلاق می شود که پس از طیف مرئی قرار گرفته و طول موج آن بین A3900-1800 ( و یا 39/0 مو و 0144/0 مو) می باشد. این اشعه قابل رویت نیست ولی از روی خاصیت شیمیایی آن می توان به وجودش پی برد حد اخیر قرار دادی است چون بین اشعه وراء بنفش واشعه ایکس از لحاظ خواص فیزیکی حد فاصل مشخص و واضحی وجود ندارد.

-اکتی نومتر فیزیکی

مهمترین این نوع اکتی نومترها، سلول فوتو الکتریک است که تشکیل شده از یک حباب از جنس کوارتز که به خوبی تخلیه شده است و شامل دو الکترود می باشد. کاتد تشکیل شده از یک رسوب فلزی نازک که جدار داخلی حباب به غیر از قسمت کوچکی را که برای ورود نور است می پوشاند. آند در داخل حباب بوده و از یک حلقه فلزی ساخته شده است. هر گاه بین دو الکترود اختلاف سطحی در حدود صد ولت برقرار نماییم به شرطی که قطب منفی به رسوب فلزی متصل باشد، و سلول در تاریکی باشد جریانی نمی گذرد ولی اگر به رسوب نور بتابانیم از آن الکترود جدا شده و جریانی که شدت آن متناسب با شدت نورتابنده است برقرار می شود. بایاد دانست که شدت این جریان معمولاً خیلی کم است (در حدود میکرو آمپر) و باید آنرا بوسیله لامپ های سه قطبی تقویت نمود.

-1) خصوصیات و ویژگی های پرتو IR

این اشعه به منطقه ای از طیف امواج الکترو مغناطیسی اطلاق می شود که بلافاصله قبل از طیف نور مرئی قرار گرفته و دارای اثر حرارتی می باشد.

منطقه اشعه زیر قرمز بین طول موجهای 8/0 مو که حد اشعه مرئی است و 343 مو که جزء امواج هرتز نیز محسوب می شود قرار دارد.

در اشعه زیر قرمز طول موج های کوتاهتر از 5/1 مو از پوست می گذرند و بقیه جذب شده و تولید حرارت می نمایند.

 

در فاز بخار

 

بخار وارد سل مخصوصی می شود که معمولا 10 سانتی متر طول دارد و می تواند مستقیماً در مسیر یکی از پرتوهای زیر قرمز قرار گیرد. دیواره های انتهایی سل معمولاً از سدیم کلرید ساخته شده اند که نسبت به نور زیر قرمز شفاف است. برای اغلب ترکیبات آلی که فشار بخار بسیار پایینی دارند استفاده از این فاز مفید است.

 

به صورت مایع

 

یک قطره از مایع بین صفحات مسطح سدیم کلرید (که درناحیه شفاف است) فشرده می شود. این ساده ترین روش کار است.

 

 

 

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید بعد از پرداخت، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

همچنان شما میتوانید قبل از خرید با پشتیبانی فروشگاه در ارتباط باشید، و فایل مورد نظرخود را  با تخفیف ویژه اخذ نمایید.

ربات فروشگاه به زودی ...

دانلود با لینک مستقیم


تحقیق طیف نگاری UV, FTIR, IR