دانلود با لینک مستقیم و پر سرعت .
نوع فایل: word
قابل ویرایش 90 صفحه
چکیده:
در این رساله ، مطالعه ترمودینامیکی مخلوط دوتایی الکترولیتیNaCl(m1)+LiCl(m2) در محیط آبی و در محدوده غلظتی 0.01 مول بر کیلوگرم تا حدود محلول های الکترولیتی اشباع شده ، بوسیله روش پتانسیومتری در دمایoC 25 مورد بررسی قرار گرفت . انحراف از ایده آلیته برای این مخلوط دوتایی الکترولیتی با تعیین ضرایب میانگین فعالیت NaCl(m1)در یک سل گالوانی بدون اتصال مایع و با استفاده از یک الکترود یون گزین آمونیوم (Na+ ISE) با غشاء پلیمری حاوی آیونوفور سدیم ) ( بهمراه یک الکترودAg/AgCl مورد بررسی قرار گرفت. این بررسی با مدل سازی این سیستم الکترولیتی بر اساس مدل نیمه تجربی برهمکنش یونی Pitzer، با جمع آوری و ثبت رایانه ای داده های پتانسیومتری برای چهار سری مخلوط الکترولیتی این نمک ها (با کسر های مولالی : , 10, 50, 100 1r =m1/m2 =) در قدرت های یونی یکسان انجام گرفت. بدین ترتیب با تطابق داده های پتانسیومتری و مدل نظری و با استفاده از روش نموداری Pitzer و همچنین با بهره گیری از روش محاسباتی تکرار، پارامترهای مختلف مربوط به ضرایب ویریال برای برهمکنش های یونی دوتایی و سه تایی ( , و ) برای نمک خالص NaCl و بویژه پارامترهای مختلف مخلوط الکترولیتی مورد نظر برای بر همکنش های یونی دوتایی (θNa,Li) و سه تایی ) (ΨNa,Li,Clبدست آمد. نتایج پتانسیومتری بدست آمده به خوبی با نتایج مشابه محاسباتی که براساس روش های فشار بخار (توسط Pitzer و همکاران) و نتایج حاصله از روش رطوبت سنجی (که توسط Guendouziو همکاران) گزارش شده است ، توافق دارد. با توجه به این نکته که استفاده از این نوع الکترودها برای مطالعه تجربی چنین سیستم های حاوی مخلوط الکترولیتی فقط در این آزمایشگاه انجام گرفته است ، نتایج حاصله و روش الکتروشیمیایی ارائه شده با این نوع الکترود ها در بررسی ترمودینامیکی چنین مخلوط های الکترولیتی که دارای مزایایی چون سرعت اندازه گیری بالا و امکان دستیابی به نتایج مربوط به رقت های زیادتر را دربرمیگیرد ، میتواند بعنوان یک روش قابل توجه در بررسی ترمودینامیکی مخلوط های الکترولیتی قلمداد گردد..
مقدمه:
کمتر کسی است که از اهمیت محلولها غافل باشد تمام مواد برای اینکه جذب بدن شوند باید بصورت محلول درآیند تا بتوانند از غشاء سلول عبور نمایند. همچنین طبیعت اطراف ما براساس انحلال و عدم انحلال مواد شکل گرفته است .
تاریخ گسترده شیمی بر اهمیت فوق العاده پدیده حلالیت گواهی می دهد . طبیعت اسرار آمیز محلولها، فلاسفه با ستان را به تفکر واداشت کیمیاگران قرون وسطی در جستجوی طلا و زندگانی ابدی بودند از اینرو علاقمند به تهیه آب حیات و حلال جهانی بودند.
با گذشت زمان و با افزایش علم بشر، علوم و اعتقادات خرافه ای جای خود را به دانش منطقی و بر مبنای واقعیت داد . اما با این وجود با توسعه علم شیمی از اهمیت موضوع کم نشد و شیمیدانان همیشه و در همه جا با مسائل مربوط به حلالیت مواجه می شوند. آنها از تفاوت حلالیت مواد، در فرآیندهای جداسازی و خالص سازی بهره می گیرند و روشهای تجریه ای آنها تقریبا به طور کامل بر ان استوار است. اغلب واکنشهای شیمیایی در فاز محلول انجام می شود و تحت تاثیر حلالیت اجزاء درون محلول قرار دارد. نیروهای جاذبه و دافعه ای که حلالیت یک گونه در فاز مایع یا جامد را تعیین می کنند هر نوع تعادل فازی بین دو یا چند جزء را کنترل می کنند . محلولهای الکترولیت بدلیل اهمیتی که دارند توجه شیمدانان را به خود معطوف داشته اند .
فارای، نخستین شخصی بود که واژه الکترولیت رادر مورد ترکیباتی که محلول یا مذاب آنها رسانای الکتریسیته است به کار برد و واژه های دیگری از قبیل یون، کاتیون، آنیون و غیره را در الکتروشیمی رایج ساخت و بعد از او آرنیوس به مطالعه و بررسی خواص محلولهای الکترولیت پرداخت و نظریه نسبتﴼ دقیق و روشنی را در مورد در رفتار الکتریکی محلولهای الکترولیت بیان نموده و به این ترتیب که واحدهای اجسام الکترولیت در موقع حل شدنشان در آب، به دو یا چند ذره دارای بار الکتریکی تقسیم می شوند و این ذرات باردارد که یون نام دارند عهده دار رسانش الکتریسیته در محلول هستند. تا سال 1920 معلوم شده بود که رفتار الکترولیتها در غلظتهای کم از محلول های غیر الکترولیت متفاوت است .
در سال 1920 میلنر به صورت تئوری توضیح داد . که علت این تفاوت نیروهای بابرد بلند می باشد. در سال 1923 دبای – هوکل توضیح ساده ای را ارائه دادند که با در نظر گرفتن نیروهای برد بلند بین یونها بدست آمده بود . سپس نظریه پردازهای زیادی، مسئله یک الکترولیت را با دقت زیادمورد بررسی قراردادند و قانون حدی دبای-هوکل را تصحیح کردند. حتی بعضی از این نظریه ها برای توضیح رفتار محلولهای الکترولیت غلیظ به کار رفت. پیشرفتهای مهم در این زمینه درحدود 50 سال گذشته بوده است، که حتی در مورد الکترولیتهای مخلوط، تا غلظتهای نسبتا بالا نیز نظریه هایی ارائه گردید. گوگنهایم معادله دبای- هوکل را برای غلظتهای بالا اصلاح کرد. در سال 1973 پیترز مدل جامعی را برای پیش بینی ضرایب فعالیت الکترولیتها ارائه داد . سپس دانشمندان زیادی از جمله چن ، لی، سون، سیمون، کوپمات و بلوم و ورا این کار را برای پیش بینی نظری ضرایب فعالیت ادامه دادند. علاوه بر این روشهای نظری، روشهای تجربی نیز برای اندازه گیری ضرایب فعالیت وجود دارد . مانند افزایش نقطه جوش، کاهش نقطه انجماد محلول نسبت به حلال، کاهش فشار بخار حلال، فشار اسمزی. که میزان تغییر این خواص در محلولهای الکترولیت چند برابر محلولهای غیر الکترولیت با مولالیته های یکسان است.
سوال اساسی در مورد انحراف از ایده آلی در محلولهای الکترولیت بر پایه نیروهای بین ذرات است لذا در شروع بحث در فصل اول به معرفی نیروهای بین ذره ای و نحوه ای عملکردشان می پردازیم، سپس در مورد انواع محلولها در روابط ترمودینامیکی حاکم بر آنها شرح مبسوطی خواهیم داد ودر آخر مدلهای ارائه شده برای تعیین ضریب فعالیت و روشهای تجربی اندازه گیری ضریب فعالیت را می آوریم. و در فصل دوم نحوه استفاده از روش پتانسیومتری برای تعیین ضرایب میانگین فعالیت برای مخلوط الکترولیتها و تعیین پارامترهای بر هم کنش یونی دوتایی و سه تایی برای مخلوط الکترولیت مورد نظر شرح خواهیم داد
فهرست مطالب:
مقدمه
بخش اول
مبانی نظری
نیروهای بین ذره ای
برهم کنش های بلندبرد
1-1-2برهم کنشهای کوتاه برد
محلول ها و روابط ترمودینامیکی آنها
محلول ایده آل
روابط ترمودینامیکی محلولهای ایده آل
1-2-3- محلولهای با قاعده
محلولهای غیر ایده آل
1-2-5ترمودینامیک محلولهای غیر ایده آل
1-2-5-1 پتانسیل شیمیایی حلال، فعالیت حلال و ضریب اسمزی در محلولهای غیر ایده آل
1-2-6 معادله گیبس – دوهم برای محلولهای الکترولیت دوجزئی و رابطه بین
ضریب فعالیت و ضریب اسمزی
مدل های توصیف کننده محلولهای الکترولیتی
1-3-5مدل دبای- هوکل
1-3-2- 1 پتانسیل در همسایگی یک یون
1-3-1-1- ایرادات نظریه دبای هوکل
1-3-2 مدل گوگنهایم
1-3-3 مدل مایزنر وکوزیک
1-3-4 مدل هیدراسیون استوکس و رابینسون
1-3-5 مدل براملی
1-3-6 مدل برهم کنش یونی پیتزر
1-3-6-1 معادلات پیترز برای محلول الکترولیتی یک جزئی
1-3-6-2 معادلات پیترز برای مخلوط های دو جزئی الکترولیت های
1-4- روشهای تجربی اندازه گیری ضرایب فعالیت
1-4-1 تنزل نقطه انجماد
1-4-2 افزایش نقطه جوش
1-4-3 تنزل فشار بخار
1-4-3-الف – روش استاتیک
1-4-3- ب: روش دینامیکی
1-4-4- روش ایزوپیستیک یا تعادل فشار بخار
1-4-5- روش رطوبت سنجی
1-4-6 روش حلالیت و نفوذ
1-4-7 روش هدایت سنجی
1-4-8 روشهای الکتروشیمیایی
1-4-8-1 استفاده از مدل برهم کنش یونی پیترز با استفاده از روش
الکتروشیمیایی
بخش دوم:
بخش تجربی
2-1 تجهیزات دستگاهی
2-2 مواد شیمیایی
2-3 تهیه محلول ها
2-3-1- تهیه محلول غلیظ لیتیم کلرید با غلظت تقریبی
2-3-2 تهیه محلول های اولیه غلیظ دوجزئی NaCl + LiCl با نسبتهای مولی مختلف
2-3-2-1- تهیه محلول غلیظ اولیه دو جزئی NaCl + LiCl با نسبت مدلی (r=100)
2-4 روش پتانسیومتری با استفاده از الکترودیون گزین (سلول الکتروشیمیای
بدون اتصال مایع)
2-5 روش افزایش استاندارد
2-6 تعیین ضرایب میانگین فعالیت بروش پتانسیومتری
2-6-1- جمع آوری داده های تجربی
2-6-2 کنترل کیفیت پاسخ دهی الکترودها
2-6-3 تعیین شیب نرنستی و همزمان دو الکترود در سلول بدون اتصال مایع
(شیب وثابت سل)
2-6-4 روش تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی الکترولیت 1:1
( NaCl + LiCl )با نسبتهای مدلی مختلف
تعیین ضریب انتخابگری پتانسیومتری الکترود Na+ نسبت به یون Li+
2-6-4-1روش تعیین ضرایب میانگین فعالیت
2-6-4-3 تعیین پارامترهای در سیستم محلول یک جزیی NaCl
2-6-4-4 تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی NaCl+LiCl با
نسبت های مولی مختلف
2-7- نتیجه گیری
فهرست اشکال:
AgNO3 شکل2-1الف -منحنی تیتراسیون پتانسیومتری جهت تعیین غلظت محلول کلرید لیتیم به کمک واکنشگ
AgNO3 شکل2-1ب-منحنی مشتق اول تیتراسیون پتانسیومتری جهت تعیین غلظت محلول کلرید لیتیم به کمک واکنشگر
AgNO3 شکل2-1ج-منحنی مشتق دوم تیتراسیون پتانسیومتری جهت تعیین غلظت محلول کلرید لیتیم به کمک واکنشگر (Na+ISE) شکل2-2-بررسی کیفیت پاسخ دهی الکترود NaCl در محلولهایی از Na+ بر حسب لگاریتم فعالیت (emf) بارسم (1M-10-4M) خالص با غلظتهای مختلف خالص (Na+Cl)تعیین شیب وپتانسیل ثابت سل در محلولهایی از
شکل2-3
شکل2-4-الف نمودار پتانسیل بر حسب لگاریتم فعالیت در سری مخلوط حاصله از روش افزایش استاندارد (R=10)
شکل2-4-ب نمودار پتانسیل بر حسب لگاریتم فعالیت در سری مخلوط حاصله از روش افزایش استاندارد (R=100)
شکل2-4-ج نمودار پتانسیل بر حسب لگاریتم فعالیت در سری مخلوط حاصله از روش افزایش استاندارد (R=50)
شکل2-5 الف نمودار تعیین پرامترهای بر هم کنش یونی بوسیله رگرسیون در ناحیه خطی از منحنی, ) در سیستمهای الکترولیتی سه تایی ( برعلیه بانسبت مولی نمودار تعیین پرامترهای بر هم کنش یونی بوسیله رگرسیون در ناحیه خطی از منحنی, ) در سیستمهای الکترولیتی سه تایی
نمودار تعیین پرامترهای بر هم کنش یونی بوسیله رگرسیون در ناحیه خطی از منحنی, ) در سیستمهای الکترولیتی سه تایی ( برعلیه LiCl بر حسب فعالیت (Na+ISE) الکترود,) emf)
شکل2-6-اطلاعات برای تعیین LiCl در محلولهای خالص از
شکل 2-7-الف منحنی نرنستی γ برحسب غلظت
شکل 2-7-ب منحنی نرنستی γ برحسب غلظت
شکل 2-7-ج منحنی نرنستی γ برحسب غلظت
شکل2-8مقایسه داده های تجربی رابینسون –استوکس با داده های تجربی این تحقیق الکترود یون گزین حاصل از محلولهای سدیم کلرید خالص emf
منابع ومأخذ:
[1] pitzer , k, Mayorga, G,’ “J.phys.chemistry” ,1973,77,19,2300,2308
[2]pirzer , k“J.phys.chemistry”,1977,10,371-372
[3]Clegg, s, pitzer, “J. phys. Chem.” , 1992,96,3513,350
[4]pitzer, k,Simonson, J,” J . phys. Chem”1986,90,3005-3009
[5]pitzer, k ,”J. phys chem.” ,77,2,268-277
[6]Hildebrand, J.H., prausnitz, Scott,R.L ,”Regular and Related Solution” van norstrand Reinhold . co , Newyork (1970)
[7]Rowlinson,J.S.,Swinton.F.L”.liquidmixtures”,3rded.Butter worth&Co(1982)
[8]Berry.R.S;Rice, S.A; Ross,J; “J. physical chemistry” ,John wiley & Sons, Newyork 1980
[9]Barrow, G.M;” physical chemistry” 4thed ;Mc Graw Hill( 1988)
[10] Levine, I.N;” phtsical chemisty”
[11] Atkinz,p.W; “3 physical chemistry”5ed Oxford university press,1995
[12]Skoog,D; West,D.M; “Fundamentals of analytical chemistry”,4 ed Holt- Saunders International( 1982)
[13]CASTELLAN,G.W;” plysical chemistry”,1 ed Addison – Wesley publishing Co,( 1964)
[14]Pitzer K.S,Mayorga.G."J.Sol.Chem",1974,10,371
[15]Deyhimi.F,Ghalami.B,"J.of Electroanalytical Chemistry"2005
[16]Lewis G.N,and Randal M.,Pitzer K.S"Phys.Chem" Mc Graw Hill,New York,1961
[17]Pitzer K.S,"J.Phys.Chem"197713,371
[18] Pitzer K.S,Simonson J.,"SJ.Phys.Chem",1989,4,320
[19] Hovath,A.L.,(1985),”Handbook of Aqueous Electrolyte Solution”Ellis Horwood Series In Physical Chemistry.
[20] Harned,H.S.,Owen,B.B.,(1958)”Physical Chemistry Of Electrolyte Solution”,Reinhold,N.Y.
[21] Deyhimi F;talanta,1999,50,1129 .
[22] Krus,P.,(1977),”Liquids and Solution Structure Dynamics”Marcel Dekkerinc.,Ny.
[23]Malatesta F. Zaboni R.,"J.Sol.Chem",1977,26,791
[24] Barrow, G.M;” physical chemistry” 5thed ;Mc Graw Hill( 1988)
[25] Robinson,R.A.,Stokes,R.H.,(1959),”Electrolyte Solution”, Butterworths Scentific,London.
[26]Parsafar G.A;Mason E.A;"J.Phys.Chem",1993,97,35,9048
[27] Chen C.C,Eva L.B,A.I.Ch.E.J.,1986,32,444
[28] Chen.C.C,Brit.H.I,Boston.J.F,Evans.L.B.A.I.Ch.E.J,1982,28,588
[29] Pitzer,K.S.,(1979),”Activity Coefficient of Electrolyte Coefficient” Eeditd by Pytkowitcz,R.M.,CrC.Press.
[30] Walter,j.,Wu.Y-C.,(1972),J.Phys.S.Chem.Ref,Data,1,4,1047
[31] .Scatchard,G.,Prentiss.S.S.,(1934),George Scatchard and S. S. Prentiss, 56, 2314
[32] Lee,L.L.,(1988),J.Chem.Phys.,78,5270
[33] Guggenhaim,E.,(1935),Phi,Mag.,19,313.
[34] Chiristenesen,C.,Sander,C.B.,Frdenslund,A.,Rasmussen,P.,(1983),
Fluid Phase Equilibria,13,279.
[35] Chorng,S.,Hirata,S.,F.,(1997),101,3209
[36] Samoilov,O.Ya.,(1965),”Stracture of Electrolyte Solution and The Hydration of Ions”,Consultants Bureau Enterprise INC.,N.
[37] Harvey,A.H.,Copeman,T.W.,Prausnitz,J,M.,(1988),J.Phys.Chem.,92,
,64,32,
[38] Stokes,R.H.,Robinson,R.A.,(1948),J.Amer.Chem.Soc.,70,1870.
[39] Zemaitis,J.F.,Clark,D.M.,Rafal,M.,(1986),”Handbook of Aqueos Electrolyte Thermodynamics”Dipper,AIChE Publiation.N.Y.
[40] Zemaitis,J.F.,Clark,D.M.,Rafal,M.,(1986),”Handbook of Aqueos Electrolyte Thermodynamics”Dipper,AIChE Publiation.N.Y.
[41] Meissner,H.P.,(1980),”Thermodynamics of Aqueous Systems With Industirial Appilcations”,edited by Newman,S.A.,Acs Sym Posium
[42]Gering.K.L.,(1964),J.Amer.Chem.Soc.,86.127.
[43] پایان نامه دوره کارشناسی ارشد,سلامت,رحمن,زیر نظر دکتر دیهیمی,دانشگاه شهید بهشتی2003
[44]طر ح پژوهشی,دانشگاه شهید بهشتی ,گروه شیمی مجری طرح فرزاد دیهیمی,یک روش جدید ضرایب گزینش پذیری الکترود های یون گزین