حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها 27 ص

اختصاصی از حامی فایل تحقیق در مورد بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها 27 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

دسته بندی : وورد

نوع فایل :  .doc ( قابل ویرایش و آماده پرینت )

تعداد صفحه : 27 صفحه


 قسمتی از متن .doc : 

 

بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها

لئونارد ام. المان، یاول دبلیو، کی، روتمود، سام روئیس، اریک وینفری

آزمایشگاه برای علم مولکولی

دانشگاه کالیفرنیای جنوبی و

بخش علم کامپیوتری

دانشگاه کالیفرنیای جنوبی

محاسبه و انتخاب سیستمهای عصبی

موسسه تکنولوژی کالیفرنیا

اخیراً، بونه، دال ووس ولیپتون، استفاده اصلی از محاسبه مولکولی را در جمله به استاندارد رمزگذاری (داده‌ها) در اتحاد متحده توضیح دادند (DES). در اینجا، ما یک توضیح از چنین حمله‌ای را با استفاده از مدل استیگر برای محاسبه مولکولی ایجاد نموده ایم. تجربه‌ ما پیشنهاد می‌کند که چنین حمله‌ای ممکن است با دستگاه table-top ایجاد شود که بصورت تقریبی از یک گرم PNA استفاده می‌کند و ممکن است که حتی در حضور تعداد زیادی از اشتباهها موفق شود:

مقدمه :

با کار آنها در زمینه DES بته، رانودرس ولیبتون [Bor]، اولین نمونه از یک مشکل علمی را ایجاد نمودند که ممکن بود برای محاسبه مولکولی آسیب‌پذیر باشد. DES یکی از سیستمهای Cryptographic می باشد که به صورت گسترده مورد استفاده قرار می‌گیرد آن یک متن رمزی 64 بیتی را از یک متن ساده 46 بیتی و تحت کنترل یک کلید 56 بیتی ایجاد می‌نماید.

در حالیکه این بحث وجود دارد که هدف خاص سخت‌افزار الکترونیکی [Wi] یا سویر کامیپوترهای همسان بصورت گسترده، این امری می‌باشد که DES را به یک میزان زمانی منطقی بشکند، اما به نظر می‌رسد که دستگاههای متوالی قدرتمند امروزی قادر به انجام چنین کاری نیستند. ما کار را با بوته ان ال دنبال کردیم که مشکل شکست DES را موردتوجه قرار داده بود و اخیراً مدل قویتری را برای محاسبه مولکولی پیشنهاد داده بود [Ro]. در حالیکه نتایج ما امید بخش بود، اما باید بر این امر تأکیدی نمودیم که آسانی این امر نیز باید سرانجام در آزمایشگاه تصمیم گرفته شود.

در این مقاله، به اصطلاح ما محله متن ساده- متن رمزدار مورد توجه قرار می‌گیرد و امید این است که کلیدی که برای عملکرد encryption (رمزدار کردن) مورد استفاده قرار می‌گیرد، مشخص شود. ساده‌ترین نظریه برای این امر، تلاش بر روی تمام کلیدهای 256 می‌باشد که رمزسازی را برای یک متن ساده تحت هر یک از این کلیدها انجام دهیم تا متن رمزدار را پیدا نمائیم. به طور مشخص، حملات کار امر مشخص نمی باشد و در نتیجه یک نیروی کامل برای انجام آن در اینجا لازم است.

ما، کار خود را با توضیح الگوریتم آغاز کردیم تا حمله متن رمزدار- متن ساده را به منظور شکستن DES در یک سطح منطقی بکار بریم. این به ما اجازه می‌دهد تا عملکردهای اصلی را که برای اجرا در یک دستگاه استیکر (Sticker) نیاز داریم و بعنوان یک نقشه مسیر برای آنچه که باید دنبال کنیم عمل می‌کنند تشخیص دهیم.

(2) الگوریتم مولکولی : بصورت تقریبی، بار رشته‌های حافظه‌ای DNA همان یکسان 256 [Ro] شروع کنید که هر یک دارای طول نئوکلیتد 11580 می‌باشد. ما فکر می‌کنیم که هر رشته حافظه دارای 5792 قطر پشت سر هم باشد (به مناطق [Ro] برگردید) B0,B1,B2,…B578 هر یک طول به میزان 20 نئوکلتید دارد. در یک مدل استیکر که اینجا وجود ادر 579 استیکر وجود ارد S0, S1, …S578 که هر یک برای تکمیل هر قطعه می‌باشد (ما به رشته‌های حافظه با استیکرهای S بعنوان پیچیدگیهای حافظه‌ای می‌باشد برمی‌گردیم) زیرا، ما به این امر توجه می‌کنیم که هر رشته نماینده یک حافظه 579 بیتی باشد، در بعضی از مواقع از Bi استفاده می‌کنیم که به بیتی که نماینده Bi می‌باشد، برمی‌گردد. قطعه B0 هرگز تنظیم می‌شود و بعداً در اجرای الگوریتم استفاده می‌شود (بخش فرعی 1-3) قطعه‌های B1 تا B56 رشته‌های حافظه‌ای می باشد که برای ذخیره یک کلید مورد استفاده قرار می‌گیرد، 64 قطعه بعدی، B57….B120 سرانجام بر اساس متن رمزگذاری کدگذاری می‌شود و بقیه قطعه‌ها برای نتایج واسطه ودر مدت محاسبه مورد استفاده قرار می‌گیرد. دستگاه استیکر که رشته‌های حافظه را پردازش می‌کند، متون رمزدار را محاسبه می‌کند که تحت کنترل یک ریز پردازنده انجام می گیرد. به این علت که در تمام نمونه‌ها، متن ساده یکسان است؛ ریز پردازنده کوچک ممکن است که آن را ذخیره سازد، ما نیاز نداریم که متن ساده را در رشته‌های حافظه نشان دهیم. هماکنون یک جفت متن رمزدار- متن ساده را در نظر بگیرید، الگوریتم اجرا شده در سه مرحله می باشد.

(1) مرحله ورودی: رشته‌های حافظه را به اجرا درآورید تا پیچیدگی‌های حافظه ای را ایجاد نماید که نماینده تمام 256 کلید می‌باشد .

(2) مرحله رمزی کردن : در هر پیچیدگی حافظه، متن رمزدار محاسبه کنید که با رمز کردن متن ساده و تحت کلید پیچیدگی همسان است.

(3) مرحله بازدهی: پیچیدگی حافظه ای که متن رمزدار آن با متن رمزدار مورد نظر تطبیق دارد، انتخاب نمایند و کلید تطبیقی با آن را بخوانید.

قسمت عمده کار در مدت مرحله دوم صورت می‌گیرد که رمزگذاری داده‌های DES صورت می‌گیرد، بنابراین ما این مراحل را در زیر مختصر کرده‌ایم. هدف ما بر روی این امر است که شرح دهیم چگونه DES در یک کامپیوتر مولکولی اجرا می‌شود و برای این امر، نشان دادن دقیق همه جزئیات در DES لازم نیست (برای جزئیات [Na] را ببینید)

ما به جای این جزئیات بر روی عملکردهای ضروری که برای DES نیاز است، توجه داریم که آن چگونگی عملکردها رانشان می دهد که با یکدیگر مرتبط می شوند تا یک الگوریتم کامل را ایجاد نمایند.

DES، یک رمزنویسی با 16 دروه است در هر دوره، یک نتیجه واسطه 32 بیتی جدید ایجاد می‌شود آن به این صورت طرح‌ریزی شده است R1….R16. ما R16, R15 را در جایگاههای B57 تا B160 ذخیره می‌کنیم (مجاور با کلید)


دانلود با لینک مستقیم


تحقیق در مورد بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها 27 ص

جزوه زیست سلولی و مولکولی

اختصاصی از حامی فایل جزوه زیست سلولی و مولکولی دانلود با لینک مستقیم و پر سرعت .

جزوه زیست سلولی و مولکولی


جزوه زیست سلولی و مولکولی

جزوه زیست سلولی و مولکولی 

 

فهرست مطالب 

مقدمه:ساختار و عملکرد سلول ها...................................................................................................12

سلول های پروکاریوت و یوکاریوت ..........................................................................................................12

اندامک های سلول های یوکاریوتی و کار آنها .............................................................................................12

شکل سلول جانوری...........................................................................................................................15

سطح سلول و ویژگی های آن................................................................................................................15

کار غشای سلولی.............................................................................................................................. 16

شکل غشای پلاسمایی........................................................................................................................17

انتشار و اسمز..................................................................................................................................17

انتشار تسهیل شده............................................................................................................................18

آندوسیتوز......................................................................................................................................19

پوتوسیتوز: .....................................................................................................................................19

فصل 1: واحد حیات.....................................................................................................................20

فصل دوم : روشهای مطالعه سلول ................................................................................................. 2

پاسخنامه..................................................................................................................................... 455

نمونه سوالات تستی ........................................................................................................................ 456

پاسخنامه..................................................................................................................................... 461

نمونه سوالات تستی ........................................................................................................................ 465

پاسخنامه..................................................................................................................................... 475

نمونه سوالات تستی ........................................................................................................................ 482

پاسخنامه..................................................................................................................................... 484

منابع ......................................................................................................................................... 486

مقدمه:ساختار و عملکرد سلول ها 

سلول ها واحدهای اساسی موجودات زنده را تشکیل می دهند. همه ی بافتها و اندام ها از سلول ساخته شده اند. در بدن

هر انسان در حدود 60 تریلیون سلول ( که هر گروه نقشی اختصاصی در اجتماع سازمان یافتـه ی بـدن دارنـد) در حـال

همکاری با هم هستند. در موجودات زنده ی تک سلولی همه ی کارهای حیاتی درون این بسـته ی میکروسـکوپی انجـام

می شود

سلول های پروکاریوت و یوکاریوت 

یکی از تفاوت های اساسی این دو که باعث اختلاف نام آنها شده است، این است که پروکاریوت هـا فاقـد غشـای هسـته

هستند. غشای هسته در همه ی سلول های یوکاریوتی وجود دارد

باکتریها پروکاریوت هستند و در میان آنها ، سیانوباکتری ها و باکتری های رشته ای پیچیده ترین سـاختار را نشـان مـی

دهند

اندامک های سلول های یوکاریوتی و کار آنها 

سلول های یوکاریوتی را معمولا غشای پلاسمایی که نازک و محکم است و نفوذ پذیری انتخابی دارد، محاصره مـی کنـد

این غشا عبور مواد را بین سلول و محیط تنظیم می کند

نکته: در بعضی سلول ها مانند سلول های عصبی ، غشای پلاسمایی به شکل زائـده هـای انگشـت ماننـدی بنـام ریزپـرز

درآمده است. ریزپرزها سطح سلول ها را افزایش می دهند

مهمترین اندامک سلول، هسته ی کروی یا تخم مرغی شکلی اسـت کـه دو غشـاء در اطـراف آن وجـود دارد. ایـن غشـاء

پوشش دو لایه ای هسته را تشکیل می دهد. هسته دارای کروماتین و جسمی متراکم تر بنام هستک می باشد

کروماتین مجموعه ای از DNA و پروتئین های هیستونی و غیرهیستونی است که اطلاعات ژنی سلول را در بر دارد. 

هستک ها بخش های خاصی از کروماتین ها هستند و رونوشت های متعددی از اطلاعـات DNA را بـرای سـنتز DNA

ریبوزومی در برمی گیرند. DNA ریبوزومی پس از رونویسـی از روی DNA هسـته ای بـا چنـد نـوع از پـروتئین هـای

مختلف ترکیب می شود تا ریبوزوم ها را بسازند. ریبوزوم ها پس از ساخته شدن از هسـتک خـارج شـده و از راه سـوراخ

های هسته به سیتوپلاسم راه می یابند. در سیتوپلاسم اندامک هـای بسـیاری از جملـه میتوکنـدری ، دسـتگاه گلـژی وزیست 

سانتریول وجود دارند. سلول های گیاهی معمولا پلاست دارند که اندامکی فتوسنتزی است و همچنـین دارای دیـواره ای

هستند که از سلولز تشکیل شده و خارج از غشای پلاسمایی است. سلول های جانوری پلاست و دیواره ی سلولی ندارند

شبکه آندوپلاسمی مجموعه ای از غشاهایی است که بعضی محصولات سلول را از محل های سنتز جدا نگه میدارد

نکته: نقش سیسترن های ( فضاهای درونی) شبکه ی آندوپلاسمی، ایجاد راهی برای عبور بعضی مواد در سلول است

غالبا مجموعه هایی از ریبوزوم روی سطح خارجی غشـاهای شـبکه آندوپلاسـمی قـرار گرفتـه انـد. بـه ایـن نـوع شـبکه

آندوپلاسمی، شبکه ی آندوپلاسمی دانه دار ( در مقابل صاف که فاقد ریبوزوم هستند) ، گفته میشود

نمونه سوالات تستی 

1- پوشش سطح بیرونی پلاسمالم چه نام دارد و از چه ترکیبی است؟ 

 1) اکستانسین- پلی ساکارید 2) اکستانسین-هیدروکسی پرولین 

 3) گلیکوکالیکس- گلیکوپروتئین 4) گلیکوکالیکس- گلیکولیپید 

2- تونوفیلامان ها در کدام ساختار دیده می شوند؟ 

 1) تاژک 2) دسموزوم 3) پلاسمودسم 4) اسکلت سیتوپلاسمی 

3- کدام اتصال در ناحیه قاعده سلول وجود دارد؟ 

 Hemi Desmosome (4 Tight Desmosome (3 Disc Desmosome (2 Belt Desmosome (1 

4- کدام اتصال سلولی به صورت Mucula adherence است؟ 

 tight junction (2 gap junction (1 

 Basement membrane (4 Desmosome (3 

5- عامل اتصال پلاک های موجود در دسموزوم ها چیست؟ 

 1) اکتین 2) کلاترین 3) گلیکوفورین 4) کادهرین 

6- در دسموزوم ها cadherinها توسط چه پروتئینی به رشته های اکتین متصل می شوند؟ 

 Talin (4 Catenin (3 Fimberin (2 Ankyrin (1 

7- فیبرونکتین جزء کدام گروه از مولکول های چسباننده سلولی است؟ 

 ECM (4 JAMs (3 SAMs (2 CAMs (1 

8- در کدام یک از سلول های بافت های ذکر شده اتصال منفذدار "gap junction" دیده می شود؟ 

 1) اپیتلیوم روده 2) بافت پوششی پوست 3) آندوتلیوم مویرگ 4) کپسول بومن 

پاسخنامه سوالات تستی 

1- گزینه 3 و 4 صحیح است. 

2- گزینه 2 صحیح است. 

3- گزینه 4 صحیح است. همی دسموزوم از نظر ریختی شبیه دسموزوم است ، اما عملکردی کاملا متفاوت دارد همی

دسموزوم در مناطقی وجود دارد که سلول ها با لامینای پایه ای یا در کشت بافت به دیواره ظرف کشت متصل می شوند

4- گزینه 4 صحیح است. دسموزوم ها یا چسبندگی موضعی (Mucula adherence) که به آنها spot

desmosomes می گویند ، اسکلت سلولی دو سلول را از طریق رشته های حد واسط به هم متصل می کنند. 

5- گزینه 3 صحیح است. کادهرین ها گلیکوپروتئین های غشایی هستند که از غشاء پلاسمایی وارد فضای بین سلولی

شده و اتصالات غیر کووالان برقرار می کنند و به یون کلسیم نیز متصل می شوند

6- گزینه 3 صحیح است. 

7- گزینه 4 صحیح است. ECM ماتریکس خارج سلولی است که فیبرونکتین جزء آن محسوب می شود. 

8- گزینه 1 صحیح است. اتصالات باز در سلول های عصبی، اپی تلیال، سلول های ماهیچه ای قلب و ماهیچه ای صاف

به وفور یافت می شود

نوع فایل:Pdf

 سایز:8.64mb

 تعداد صفحه:485 


دانلود با لینک مستقیم


جزوه زیست سلولی و مولکولی

تحقیق درمورد درباره نظریه مولکولى تکامل

اختصاصی از حامی فایل تحقیق درمورد درباره نظریه مولکولى تکامل دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

 

درباره نظریه مولکولى تکامل

ژاک لوسین مونو (J.monod) در سال ۱۹۱۰ در پاریس به دنیا آمد و در سال ۱۹۳۱ همانجا از دانشگاه فارغ التحصیل شد. در سال ۱۹۳۴ استادیار جانورشناسى شد و چند سال اول پس از فارغ التحصیلى درباره منشاء حیات به تحقیق پرداخت. طى جنگ جهانى دوم در سازمان مقاومت فعالیت داشت و پس از آن به انستیتو پاستور پیوست. در سال ۱۹۵۳ رئیس گروه زیست شیمى سلولى شد. در سال ۱۹۵۸ درباره ساخت آنزیم در باکترى جهش یافته با فرانسوا ژاکوپ (F.Jacob) و آرتور پاردى (A.Pardee) به همکارى پرداخت. این کار به تدوین نظریه تبیین فعالیت ژن و چگونگى روشن و خاموش شدن ژن ها در مواقع لزوم، توسط مونو و ژاکوب انجامید.

در سال ۱۹۶۰ آنها اصطلاح «اپرون» را براى گروهى از ژن ها معرفى کردند که با یکدیگر پیوند نزدیکى دارند و هر یک از آنها مرحله اى متفاوت از یک مسیر زیست شیمیایى را کنترل مى کند. سال بعد آنها وجود مولکولى به نام RNA ى پیامبر را فرض کردند که اطلاعات ژنتیکى لازم براى ساخت پروتئین را از اپرون به ریبوزوم ها، یعنى جایى که پروتئین ساخته مى شود، مى برد. مونو و ژاکوب به خاطر این کار جایزه نوبل پزشکى یا فیزیکى سال ۱۹۶۵ را گرفتند، جایزه اى مشترک با آندره لوف (A.Lwoff) که او هم روى ژنتیک باکترى کار مى کرد. در سال ۱۹۷۱ مونو مدیر انستیتو شد و در همان سال کتاب پرفروش «تصادف و ضرورت» را به چاپ رساند. او در این کتاب استدلال مى کند که حیات در اثر تصادف پدید آمده و در نتیجه پیامد ناگزیر فشار هاى ناشى از انتخاب طبیعى به وضعیت کنونى درآمده است.

این کتاب با همین عنوان توسط حسین نجفى زاده ترجمه و در سال ۱۳۵۹ توسط خود وى منتشر شده است. ژاک مونو در سال ۱۹۷۶ درگذشت.متن زیر ترجمه بخشى از فصل دوم کتاب «مسائل انقلاب علمى» (۱۹۷۴) به ویراستارى هار (R.Harre) است. این متن تحت عنوان «درباره نظریه مولکولى تکامل» طى روز هاى آینده در همین ستون عرضه خواهد شد.

آنچه مى خواهم امروز درباره اش صحبت کنم وضعیت کنونى نظریه تکامل است. اجازه دهید بى حاشیه بگویم هنگامى که از نظریه تکامل حرف مى زنم، دقیقاً از نظریه تکامل موجودات زنده درون چارچوب عمومى نظریه داروینى سخن مى گویم، نظریه اى که امروزه هنوز زنده است. در واقع این نظریه خیلى زنده تر از آن است که بسیارى از زیست شناسان ممکن است گمان کنند؛نظریه تکامل نظریه اى بسیار شگفت انگیز است. در ابتدا یادآورى این نکته لازم است که نظریه تکامل به علت مضامین عمومى آن از بسیارى جهات مهمترین نظریه علمى است که تاکنون تدوین شده. تردیدى نیست که هیچ نظریه علمى دیگرى چنین مضامین فلسفى، ایدئولوژیک و سیاسى عظیمى دربر نداشته است.

علاوه بر این نظریه تکامل از نظر جایگاه نیز بسیار شگفت انگیز است، زیرا با نظریه هاى فیزیکى کاملاً تفاوت دارد. هدف بنیادى نظریه هاى فیزیکى کشف قوانین عام )جهانى( است، قوانینى که در مورد تمام اشیاى جهان صدق مى کنند، با این امید که بتوان براساس این قوانین- یعنى براساس اصول نخستین- نتایجى استنباط کرد که پدیده هاى سرتاسر عالم را تبیین کنند. هنگامى که یک فیزیکدان به پدیده اى خاص توجه مى کند، امیدوار است بتواند نشان دهد که او مى تواند این پدیده را در قوانین عام، از اصولى نخستین، نتیجه بگیرد. در عوض نظریه تکامل هدف متفاوتى دارد. گستره کاربرد این نظریه جهانى نیست، بلکه تنها گوشه کوچکى از این جهان است، یعنى جهان موجودات زنده آن طور که ما امروزه آنها را در زمین مى شناسیم. هدف این نظریه را مى توان توضیح وجود تقریباً دو میلیون گونه جانور و در حدود یک میلیون گونه گیاه، به اضافه تعداد نا معلومى گونه باکترى تعریف کرد که امروزه بر سطح زمین زندگى مى کنند.این گوشه بسیار کوچکى از جهان است و هیچ معلوم نیست که آیا وجود این اشیاى بسیار خاص- موجودات زنده- را مى توان، یا هرگز بتوان از اصول نخستین استنباط کرد. من همین جا مى گویم که به دلایل بسیار عمیقى که سعى خواهم کرد تبیین کنم، باور ندارم انجام چنین کارى هرگز امکان پذیر باشد.ویژگى شگفت انگیز دیگر نظریه تکامل آن است که هرکسى فکر مى کند آن را مى فهمد؛ منظورم فلاسفه، دانشمندان علوم اجتماعى و نظایر آنها است. در حالى که در واقع تعداد اندکى عملاً آن را آن طور که هست، یا حتى آن طور که داروین بیانش کرده بود، مى فهمند. یا حتى از آن هم کمتر، طورى که ما اکنون مى توانیم در زیست شناسى آن را بفهمیم. در واقع اولین بد فهمى بزرگ توسط خود اسپنسر (H.Spencer) انجام


دانلود با لینک مستقیم


تحقیق درمورد درباره نظریه مولکولى تکامل

مقاله در مورد بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها 27 ص

اختصاصی از حامی فایل مقاله در مورد بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها 27 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 42

 

بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها

لئونارد ام. المان، یاول دبلیو، کی، روتمود، سام روئیس، اریک وینفری

آزمایشگاه برای علم مولکولی

دانشگاه کالیفرنیای جنوبی و

بخش علم کامپیوتری

دانشگاه کالیفرنیای جنوبی

محاسبه و انتخاب سیستمهای عصبی

موسسه تکنولوژی کالیفرنیا

اخیراً، بونه، دال ووس ولیپتون، استفاده اصلی از محاسبه مولکولی را در جمله به استاندارد رمزگذاری (داده‌ها) در اتحاد متحده توضیح دادند (DES). در اینجا، ما یک توضیح از چنین حمله‌ای را با استفاده از مدل استیگر برای محاسبه مولکولی ایجاد نموده ایم. تجربه‌ ما پیشنهاد می‌کند که چنین حمله‌ای ممکن است با دستگاه table-top ایجاد شود که بصورت تقریبی از یک گرم PNA استفاده می‌کند و ممکن است که حتی در حضور تعداد زیادی از اشتباهها موفق شود:

مقدمه :

با کار آنها در زمینه DES بته، رانودرس ولیبتون [Bor]، اولین نمونه از یک مشکل علمی را ایجاد نمودند که ممکن بود برای محاسبه مولکولی آسیب‌پذیر باشد. DES یکی از سیستمهای Cryptographic می باشد که به صورت گسترده مورد استفاده قرار می‌گیرد آن یک متن رمزی 64 بیتی را از یک متن ساده 46 بیتی و تحت کنترل یک کلید 56 بیتی ایجاد می‌نماید.

در حالیکه این بحث وجود دارد که هدف خاص سخت‌افزار الکترونیکی [Wi] یا سویر کامیپوترهای همسان بصورت گسترده، این امری می‌باشد که DES را به یک میزان زمانی منطقی بشکند، اما به نظر می‌رسد که دستگاههای متوالی قدرتمند امروزی قادر به انجام چنین کاری نیستند. ما کار را با بوته ان ال دنبال کردیم که مشکل شکست DES را موردتوجه قرار داده بود و اخیراً مدل قویتری را برای محاسبه مولکولی پیشنهاد داده بود [Ro]. در حالیکه نتایج ما امید بخش بود، اما باید بر این امر تأکیدی نمودیم که آسانی این امر نیز باید سرانجام در آزمایشگاه تصمیم گرفته شود.

در این مقاله، به اصطلاح ما محله متن ساده- متن رمزدار مورد توجه قرار می‌گیرد و امید این است که کلیدی که برای عملکرد encryption (رمزدار کردن) مورد استفاده قرار می‌گیرد، مشخص شود. ساده‌ترین نظریه برای این امر، تلاش بر روی تمام کلیدهای 256 می‌باشد که رمزسازی را برای یک متن ساده تحت هر یک از این کلیدها انجام دهیم تا متن رمزدار را پیدا نمائیم. به طور مشخص، حملات کار امر مشخص نمی باشد و در نتیجه یک نیروی کامل برای انجام آن در اینجا لازم است.

ما، کار خود را با توضیح الگوریتم آغاز کردیم تا حمله متن رمزدار- متن ساده را به منظور شکستن DES در یک سطح منطقی بکار بریم. این به ما اجازه می‌دهد تا عملکردهای اصلی را که برای اجرا در یک دستگاه استیکر (Sticker) نیاز داریم و بعنوان یک نقشه مسیر برای آنچه که باید دنبال کنیم عمل می‌کنند تشخیص دهیم.

(2) الگوریتم مولکولی : بصورت تقریبی، بار رشته‌های حافظه‌ای DNA همان یکسان 256 [Ro] شروع کنید که هر یک دارای طول نئوکلیتد 11580 می‌باشد. ما فکر می‌کنیم که هر رشته حافظه دارای 5792 قطر پشت سر هم باشد (به مناطق [Ro] برگردید) B0,B1,B2,…B578 هر یک طول به میزان 20 نئوکلتید دارد. در یک مدل استیکر که اینجا وجود ادر 579 استیکر وجود ارد S0, S1, …S578 که هر یک برای تکمیل هر قطعه می‌باشد (ما به رشته‌های حافظه با استیکرهای S بعنوان پیچیدگیهای حافظه‌ای می‌باشد برمی‌گردیم) زیرا، ما به این امر توجه می‌کنیم که هر رشته نماینده یک حافظه 579 بیتی باشد، در بعضی از مواقع از Bi استفاده می‌کنیم که به بیتی که نماینده Bi می‌باشد، برمی‌گردد. قطعه B0 هرگز تنظیم می‌شود و بعداً در اجرای الگوریتم استفاده می‌شود (بخش فرعی 1-


دانلود با لینک مستقیم


مقاله در مورد بکارگیری محاسبه مولکولی با استاندارد رمزگذاری داده‌ها 27 ص

شیمی مولکولی 17 ص

اختصاصی از حامی فایل شیمی مولکولی 17 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 17

 

شیمی مولکولی

موضوع: دانش ها و فنون مرتبط با نانو

آیا تا به حال هوا را داخل سرنگی محبوس کرده‌اید تا آن را تحت فشار قرار دهید؟

چه اتفاقی می‌افتد وقتی پیستون سرنگ را فشار می‌دهید؟

هوا چگونه متراکم می‌شود؟ چگونه در یک فضای کوچکتر جا می‌گیرد؟

یک تکه اسفنج را می‌توان در فضای کوچکتری متراکم کرد. علت تراکم اسفنج این است که در آن سوراخهای ریزی وجود دارد، وقتی اسفنج را فشار می‌دهیم هوای داخل این سوراخها خارج می‌شود و ماده جامد اسفنج به هم نزدیکتر می‌گردد. درست مثل زمانی که یک تکه اسفنج خیس را فشار می‌دهید؛ آب از سوراخهای اسفنج خارج و اسفنج متراکم می‌شود. "بویل"، دانشمند انگلیسی در سال 1662 میلادی مقداری جیوه – که فلزی مایع است- را در یک لوله شیشه‌ای پنچ متری ریخت. این لوله خمیده به شکل حرف انگلیسی U و یک سمت آن مسدود بود. بویل مشاده کرد که با افزودن جیوه هوای به دام افتاده در سمتی که بسته است، متراکم می‌شود و فضای کمتری اشغال می‌کند. بویل نتیجه گرفت که هوا باید از ذرات بسیار کوچک، یعنی اتمهای ریز، تشکیل شده باشد. میان اتم‌ها فضایی است که در آن هیچ چیز نیست. وقتی هوا متراکم می‌شود، اتم‌ها به هم نزدیکتر می‌شوند. بویل همان سال‌ها در کتابی نوشت: "عنصرها را باید با آزمایش کشف کرد. شیمیدانها باید بکوشند تا هر چیزی را به مواد ساده‌تر تجزیه کنند، آن ماده یک عنصر است."

دانشمندان بر مبنای این توصیه بویل، تا اواخر قرن هجدهم حدود 30 عنصر گوناگون کشف کردند و مواد مرکب زیادی را که از این عناصر ساخته شده بود را بررسی کردند. بسیاری از مواد مرکب بررسی شده تا آن زمان از مولکول‌های ساده ساخته شده بودند و هر کدام بیش از چند اتم نداشتند. کافی بود فهرستی از انواع گوناگون اتمها تهیه شده و گفته شود که در هر ماده مرکب از هر نوع اتم چند عدد وجود دارد. در سال 1824 میلادی (1203 شمسی) "یوستون لیبینگ" و "فردریخ وهلر"، شیمیدان آلمانی درباره دوماده مرکب متفاوت تحقیق می‌کردند. هریک از آنها برای ماده مرکب خود فرمولی بدست آورد و نشان داد که در آن چه عناصری و از هر عنصر چند اتم وجود دارد. وقتی آنها نتایج کار خود را اعلام کردند معلوم شد که هر دو ماده دارای فرمول یکسانی هستند. با اینکه این دو ماده با هم متفاوت بودند و از هر جهت خواص گوناگونی داشتند، مولکولهای آنها از عناصر یکسان تشکیل شده و حتی عده اتمهای هر عنصر در هر دو ماده یکسان بود. به این ترتیب مشخص شد که تنها جمع کردنِ عده اتمهای موجود در یک مولکول کافی نیست. و این اتمها باید آرایش ویژه‌‌‌ای داشته باشند. بنابراین، آرایش متفاوت سبب تفاوتِ مولکولها می‌شود و خواص مواد با هم فرق خواهند داشت.

با توجه به اینکه هم مولکولها و هم اتمها به قدری کوچک هستند که دیده نمی‌شوند، شیمیدانان چگونه می توانند نوع آرایش اتم‌ها را در مولکولها بیابند؟

نخستین گام را در این راه، "ادوارد فرانکلندِ" انگلیسی برداشت. او مولکول‌های آلی را با برخی از فلزات ترکیب کرد و دریافت که اتمِ یک نوع فلزِ، همیشه با تعداد مشخصی از مولکول‌های آلی ترکیب می‌شود. او نتیجه گرفت که هر اتم توانایی و ظرفیت خاصی برای ترکیب با عناصر دیگر دارد. او اسم این خصلت را "والانس" گذاشت. "والانس" کلمه‌ای لاتین به معنای "ظرفیت" یا "توانایی" است. برای مثال وقتی می‌گوییم:"ظرفیت هیدروژن «یک» است"، یعنی اتم هیدروژن تنها با یک اتم دیگر می‌تواند ترکیب شود. ظرفیت اکسیژن «دو»، نیتروژن «سه» و کربن «چهار» است. اسکات کوپرِ اسکاتلندی، نیز در 1858 میلادی نظریه "پیوندهای شیمیایی" را مطرح کرد. او معتقد بود که اتمها با "قلاب" یا "پیوند" به یکدیگر

متصل می‌شوند و مولکولهای مختلف را تشکیل می‌دهند. طبق نظریه او، هر اتم به اندازه "ظرفیت" یا "والانس" خود می‌تواند با اتمهای دیگر پیوند بدهد. کوپر همچنین پیشنهاد کرد که اتم‌ها را با توجه به ظرفیتشان و تعداد پیوندهایی که می‌توانند با سایر اتمها داشته باشند، به صورت ذیل نمایش دهند:

به این ترتیب می‌توانیم مولکول‌ها را با رسم پیوندهای میان اتم‌ها، به شکل زیر نشان بدهیم:

استفاده از روش فوق برای نشان دادن ساختمان مولکول‌های کوچک و غیر آلی، به راحتی مقدور بود، اما در مورد مولکول‌های بزرگتر و مواد مرکب آلی، مشکلاتی وجود داشت که گاه باعث گمراهی می‌شد. از اینرو "ککوله" تلاش کرد تا مشکل ظرفیت را در موردِ مواد مرکب آلی برطرف کند. "فردریش آگوست ککوله" با توجه به این مسأله که هر اتم کربن ظرفیت اتصال به چهار اتم دیگر را دارد، توانست مسایل مربوط به تعداد زیادی از مولکول‌ها -که ساختمان آنها تا آن زمان معمّا به نظر می‌رسید- را حل کند.

امروزه نیز از همین مدل برای نشان دادن مولکولها و همچنین توضیح خواص آنها استفاده می‌شود.

اما شیمی‌دانان ها چگونه می‌توانند بین ساختار مولکول و خواص آن ارتباط برقرار کنند؟

مواد مختلف بسته به این‌که از چه عناصر تشکیل شده‌اند و دارای چه آرایشی هستند، خواص مختلفی دارند. برای مثال موادی که خاصیت اسیدی از خود نشان می‌دهند در ساختار مولکولی خود اتم هیدروژنی دارند که به اکسیژن متصل است و آن اتم اکسیژن هم با یک عنصر نافلز مانند گوگرد، فسفر و... پیوند دارد. حال اگر به جای اتم نافلز، یک اتم فلز مانند سدیم، کلسیم یا ... قرار گیرد، ترکیب به جای "خصلت اسیدی"، "خاصیت قلیایی" خواهد داشت.

در داروها و مولکول‌های بزرگ، خواص ترکیب به عوامل متعددی بستگی دارد. در نانو فناوری که هدف ساختن مولکولی جدید با رفتاری خواص است، یک دانشمند شیمی مولکولی با استفاده از تخصص خود، آرایشی از اتم‌ها را پیشنهاد می‌کند که خواصیت مورد نظر ما را داشته باشد. از سوی دیگر باید بدانیم مولکولها صرفاً آنچه ما روی کاغذ رسم می‌کنیم نیستند. مولکول‌ها دارای بعد هستند و فضا اشغال می‌کنند.

یک مولکول در فضا آرایشهای مختلفی را می‌تواند اختیار کند. درحال حاضر با استفاده از یک سری فنون خاص و به کمک کامپیوتر می‌توان آرایش‌های مختلف را پیش‌بینی کرده و چگونگی قرار گرفتن اتمها را در کنار یکدیگر را بررسی کرد. همچنین می توان حدس زد که هر آرایش مولکولی چه خواصی را موجب می‌شود. این کار نیز به واسطه اطلاعاتی که یک دانشمند شیمی مولکولی از مطالعه ساختارهای مختلف مولکولها بدست آورده است، امکان پذیر می‌باشد.

شاخه‌ای از نانوفناوری که با بهره‌گیری از شیمی مولکولی و روشهای محاسباتی فیزیکی و مکانیک کوانتومی، آرایشهای متنوع مولکولها را بررسی می‌کند را نانوفناوری محاسباتی می‌نامند.

فناوری نانو چیست؟

نانوتکنولوژی، فناوری جدید است که تمام دنیا را فرا گرفته است و به تعبیر دقیقتر "نانوتکنولوژی بخشی از آینده نیست بکله همه آینده است" . در این نوشتار بعد از تعریف نانوتکنولوژی و بیان کاربردهای آن دلایل و ضرورتهای توجه به این فناوری آورده شده است:

تعریف نانوتکنولوژی و آشنایی با آن

نانوتکنولوژی، توانمندی تولید مواد، ابزارها و سیستمهای جدید با در دست گرفتن کنترل در سطوح ملکولی و اتمی و استفاده از خواص است که در آن سطوح ظاهر میشود. از همین تعریف ساده برمیآید که نانوتکنولوژی یک رشته جدید نیست، بلکه رویکردی جدید در تمام رشته هاست. برای نانوتکنولوژی کاربردهایی را در حوزه های مختلف از غذا، دارو، تشخیص پزشکی و بیوتکنولوژی تا الکترونیک، کامپیوتر، ارتباطات، حملونقل، انرژی، محیط زیست، مواد، هوافضا و امنیت ملی برشمرده اند.کاربردهای وسیع این عرصه به همراه پیامدهای اجتماعی، سیاسی و حقوقی آن، این فن آوری را بهعنوان یک زمینه فرا رشتهای و فرابخش مطرح نموده است.

هر چند آزمایشها و تحقیقات پیرامون نانوتکتولوژی از ابتدای دهه 80 قرن بیستم بطور جدی پیگیری شد، اما اثرات تحول آفرین، معجزه آسا و باورنکردنی نانوتکنولوژی در روند تحقیق و توسعه باعث گردید که نظر تمامی کشورهای بزرگ به این موضوع جلب گردد و فناوری نانو را به عنوان یکی از مهمترین اولویتهای تحقیقاتی خویش طی دهه اول قرن بیست و یکم محسوب نمایند .

استفاده از این فنآوری در کلیه علوم پزشکی، پتروشیمی، علوم مواد، صنایع دفاعی، الکترونیک، کامپوترهای کوانتومی و غیره باعث شده که تحقیقات در زمینه نانو بهعنوان یک چالش اصلی علمی و صنعتی پیش روی جهانیان باشد. لذا محققین، اساتید و صنعتگران ایرانی نیز باید در یک بسیج همگانی، جایگاه، موقعیت و وضعیت خویش را در خصوص این موضوع مشخص نمایند و با یک برنامهریزی علمی دقیق و کارشناسانه به حضوری فعال و حتی رقابتی سالم در این جایگاه، عرضاندام و ابراز وجود نمایند و برای چنین کاری طراحی یک برنامه منسجم، فراگیر و همه جانبه اجتناب ناپذیر است.

نانوتکنولوژی و کاربردهای آن

علوم و فناوری نانو، عنصر ی اساسی در درک بهتر طبیعت در دهه‌های آتی خواهد بود. از جمله موارد مهم در آ ی نده، همکاریهای تحقیقاتی میان‌رشته‌ا‌ی، آموزش خاص و انتقال ایده‌ها و افراد به صنعت خواهد بود. بخشی از تأثیرات و کاربردهای نانوتکنولوژی به شرح

زیر می‌باشد:

1 – تولید ، مواد و محصولات صنعتی :

نانوتکنولوژی تغییر بنیانی مسیری است که در آینده، موجب ساخت مواد و ابزارها خواهد شد. امکان سنتز بلوک‌های ساختمانی نانو با اندازه و ترکیب به دقّت کنترل‌شده و سپس چیدن آنها در ساختارهای بزرگتر، که دارای خواص و کارکرد منحصربه‌فرد باشند، انقلابی در مواد و فرآیندهای تولید آنها، ایجاد می‌کند. محقّقین قادر به ایجاد ساختارهایی از مواد خواهند شد که در طبیعت نبوده و شیمی مرسوم نیز قادر به ایجادشان نبوده‌است. برخی از مزایای نانوساختارها عبارتست از: مواد سبک‌تر، قوی‌تر و قابل برنامه‌ریزی ؛ کاهش هزینة عمر کاری از طریق کاهش دفعات نقص فنّی ؛ ابزارهایی نوین بر پایة اصول و معماری جدید ؛ بکارگیری کارخانجات مولکولی یا خوشه‌ا‌ی که مزیّت مونتاژ مواد در سطح نانو را دارند.

2- پزشکی و بدن انسان:

رفتار مولکولی در مقیاس نانومتر، سیستمهای زنده را اداره می‌کند. یعنی مقیاسی که شیمی، فیزیک، زیست‌شناسی و شبیه‌سازی کامپیوتری، همگی به آن سمت درحال گرایش هستند.

• فراتر از سهل‌شدن استفادة بهینه از دارو، نانوتکنولوژی می‌تواند فرمولاسیون و مسیرهایی برای رهایش دارو ( Drug Delivery ) تهیه کند، که به‌نحو حیرت‌انگیزی توان درمانی داروها را افزایش می‌دهد.

• مواد زیست‌سازگار با کارآیی بالا، از توانایی بشر در کنترل نانوساختارها حاصل خواهدشد. نانومواد سنتزی معدنی و آلی را مثل اجزای فعّال، می‌توان برای اعمال نقش تشخیصی (مثل ذرات کوانتومی که برای مرئی‌سازی بکار می‌رود) درون سلولها وارد نمود.

• افزایش توان محاسباتی بوسیلة نانوتکنولوژی، ترسیم وضعیت شبکه‌های ماکرومولکولی را در محیط‌های واقعی ممکن می‌سازد. اینگونه شبیه‌سازی‌ها برای بهبود قطعات کاشته‌شدة زیست‌سازگار در بدن و جهت فرآیند کشف دارو، الزامی خواهدبود.

3- دوام‌پذیری منابع: کشاورزی، آب، انرژی، مواد و محیط زیست پاک:

نانوتکنولوژی چنان چ ه ذکر شد، منجر به تغییرات ی شگرف در استفاده از منابع طبیعی، انرژی و آب خواهد شد و پس ا ب و آلودگی را کاهش خواهدداد. همچنین فنّاوری‌های جدید، امکان بازیافت و استفادة مجدد از مواد، انرژی و آب را فراهم خواه ن د کرد. در زمینه محیط زیست ، علوم و مهندسی نانو، می‌تواند تأثیر قابل ملاحظه‌ا‌ی ، در درک مولکولی فرآیندهای مقیاس نانو که در طبیعت رخ می‌دهد ؛ در ایجاد و درمان مسائل زیست‌محیطی از طریق کنترل انتشار آلاینده‌ها ؛ در توسعة فنّاوری‌های "سبز" جدید که محصولات جانبی ناخواستة کمتری دارند و ی ا در جریانات و مناطق حاوی فاضلاب، داشته‌باشد. لازم به ذکراست، نانوتکنولوژی توان حذف آلودگی‌های کوچک از منابع آبی (کمتر از 200 نانومتر) و هوا (زیر 20 نانومتر) و اندازه‌گیری و تخفیف مداوم آلودگی در مناطق بزرگتر را دارد.

در زمینه انرژی ، نانوتکنولوژی می‌تواند به‌طور قابل ملاحظه‌ا‌ی کارآیی، ذخیره‌سازی و تولید انرژی را تحت تأثیر قرار د ا د ه مصرف انرژی را پایین بیاورد . به عنوان مثال، شرکتهای

مواد شیمیایی، مواد پلیمری تقویت‌شده با نانوذرات را ساخته‌اند که می‌تواند جایگزین اجزای فلزی بدنة اتومبیلها شود. استفاده گسترد ه ازاین نانوکامپوزیت‌ها می‌تواند سالیانه 5/1 میلیارد لیتر صرفه‌جویی مصرف بنزین به ‌همراه داشته‌باشد .


دانلود با لینک مستقیم


شیمی مولکولی 17 ص