حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

انتقال موج رادیو

اختصاصی از حامی فایل انتقال موج رادیو دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 31

 

انتقال موج رادیو

مقدمه

مطالعه انتقال انرژی در بسامد رادیو از یک نقطه (انتقال دهنده) به نقطه دیگر( در یافت کننده) انتقال موج رادیو نامیده می شود. امواج رادیویی بخشی از طیف الکترومغناطیسی وسیعی هستند که ازبسامدهای خیلی پایین توسعه می یابند این بسامدها بوسیله قدرت الکتریکی تولید می شود و براحتی با بسامدهای بینهایت زیاد پرتوی منظم افزایش می یابند. بین این دو نقطه بی انتها باندهای بسامد برای استفاده های روزانه وجود دارد. بسامدهای رادیو در سیستم هایی برای تولید صداهای شنیدنی. بسامدهای رادیو- نور مادون قرمز و ماوراء بنفش و اشعه x استفاده می شود.

تمام امواج الکترومغناطیس بدون توجه به بسامد با همان سرعت منتقل می شوند. نور در موج الکترومغناطیسی و سرعت انتقال به سرعت نور اشاره دارد (C) سرعت نور در خلأ 108×3m/sec است.سرعت هر موج به فاصله متوسط آن بستگی دارد اما برای سادگی معمولاً سرعت در خلأ را در نظر می گیرند. بسامد موج با تعداد چرخشی در هر ثانیه یا هرتز(HZ)تعریف می شودکه به طول موج X ارتباط دارد و به این صورت بیان می شود. c/x=f. شکل 1- 1. 2

ردیف هایی با باندهای مختلف با طیف الکترومغناطیسی در بسامد و طول موج را نشان می دهد.

معمولاً بسامد رادیو در بخش زیری طیف الکترو مغناطیسی بسامدهای اشعه ماوراء بنفش قرار می گیرد. در حال حاضر حد بالایی بسامدهای رادیویی تقریباً GHZ100 است . در طیف بسامد رادیو باندهایی از بسامد وجود دارد که به منظور انتقال رادیویی اختصاص دارد. روش ها و بخش های زیر در باندهای طیف بسامد رادیو بکار می روند.

تقسیمات بسامد باند AM شامل بسامد متوسط (MF) KHZ300 تا 3 MHZ است. بسامدهای باند FM و بخش باند TV حاوی باند VHF است که از 30MHZ به 300MHZ توسعه می یابد. بقای تقسیمات TV شامل باند UHF از MHZ300 به GHZ3 است. تقسیمات برای خدمات کمکی انتشار رادیویی مثل دستگاه انتقال صدای گرامافون متحرک- استادیو یا اتحالات انتقال دهنده- ایستگاه تقویت ITES, MDS- intercity که با باندهای SHF, UHF-VHF-MF(بیشترین بسامد بالا) پراکنده می شوند. نمودار 1-1. 2 بعضی از تقسیمات طراحی اند. را در منطقه انتقال رادیویی نشان می دهد. برای خدمات کمکی تقسیمات از یک زمان به زمان دیگر تغییر می کنند همانطور که نیازهای مختلف مناطق برای بسامدهای رادیویی تغییر می کند و تکنولوژی برای تجهیزات اصلاح می شود.

انتقال کمیت: انرژی که در یک انتقال دهنده ساتع می شود ممکن است مسافتهای مختلفی را طی کرده باشد تا ما آن را دریافت کنیم. مسیر موج رادیو به چند عامل بستگی دارد این عوامل شامل : بسامد – نوع آنتن و ارتفاع آن- شرایط جوی زمین. امواج زمینی همان امواج رادیویی هستند که فقط از سطح زمین انتقال می یابند. گرچه تمام امواج رادیویی چند موج زمینی ترکیب کننده دارند چون زمین به طور متوسط یک محیط قابل انتقال است ولی آن شدیداً امواج رادیویی را تضعیف می کند (نازک می کند). این تضعیف با بسامد افزایش می یابد پس این نوع انتقال فقط برای بسامدهای زیر MHZ30 مفید است . جو زمین برای انجام یک فاصله کافی زمین را ترجیح می دهد چون زمین یک مخابره واسطه است. همانطور که در شکل 2-1. 2 توضیح داده شده جو شامل چند لایه مختلف است.

تروپوسفر لایه ای است که از سطح زمین تا Km16 بالای زمین ادامه دارد. این لایه روش اصلی انتقال بسامدهای بالای MHZ30 است و انتقال از طریق این لایه به شرایط آب و هوایی بستگی دارد. لایه بعدی استراتوسفر است که تا 40 Km بالای زمین ادامه دارد این لایه اثر زیادی روی انتقال امواج رادیویی ندارد. یونسفرتاKm400 بالای سطح زمین ادامه دارد. این منطقه مسئول محیطی است که هوا به اندازه کافی یونیزه شده است. بیشتر به وسیله اشعه ماوراء بنفش خورشید امواج رادیویی زیر MHZ30 را منعکس یا جذب می کنند. یونوسفر دائماً تغییر می کند و معمولاً حاوی لایه های جزئی زیر است.

1) لایه O . این لایه در ارتفاع km 50 تا km 90 وجود دارد و در طول ساعات روشن روز بوجود می آید . تراکم الکترون مستقیماً به بزرگی زاویه خورشید بستگر دارد. این لایه امواجی که بسامدهای بالا و متوسطی دارند را جذب می کند.

2) لایه E. این لایه در ارتفاع km110 وجود دارد و برای انتقال امواج با بسامد متوسط در زمان شب مهم است. یونیزاسیون این لاتیه کاملاً به زاویه بزرگی خورشید بستگی دارد. در زمانهای بی نظم خاصی مثل زمانهای ابری ممکن است یونیزاسیون زیاد اتفاق نیفتد. این مناطق به عنوان sporqrdic E معروف است و گاهی اوقات مانع از امواجی که به لایه E نفوذ کرده اند و می خواهندلایه های بالاتربروند می شوند.لایه sporqrdic E در طول تابستان و زمستان رایج است. این لایه در طول تابستان در طولانی ترین زمان تشکیل می شود از ماه می تا آگوست و در زمستان فقط در ماه دسامبر وجود داردر ماه های میانه تابستان زمانی که تراکم الکترون در بالاترین سطح آن است نشانه های TV در باند VHF در مسافت های بیش از 100 یا 1000 کیلیومتری منتقل می شود.

3) لایه 1F . این لایه در ارتفاع 175 تا 200 کیلومتری و فقط در طول روز به وجود می آید امواجی که به لایه E نفوذ می کنند به این لایه نیز نفوذ می کنند و با لایه 2F منعکس می شوند. این لایه جذب اضافی امواج را شروع می کند.

4) لایه 2 F. این لایه در بالای مرزهای جو (250 تا 400 km) و درتمام مدت وجود دارد. گرچه ارتفاع و تراکم الکترون با تغییر شب و روز- فصل ها و چرخه های لکه های خورشیدی تغییر می کند. در طول شب لایه 1F با 2F واقع در 300 کیلو متری ترکیب می شود. علاوه بر این کاهش لایه های D,E در شب باعث می شود که تراکم و صدا بیشتر از روز باشد.

انتقال فضای آزاد

برای ارزیابی و مقایسه انتقال امواج رادیویی در شرایط مختلف موسوم است که یک استاندارد مرجع بوجود آوریم. این استاندارد اتلاف امواج منتقل شده در فضای آزاد بین دو آنتن دلخواه را محاسبه می کند . ساده ترین حالت ارزیابی تابش ساتع شده از یک منبع ایزوتروپیک است: یک انتن دلخواه انرژی را با تراکم یک نواختدر تمام مسیر ها می تاباند. آنتن ایزوتروپیک به منبع نور


دانلود با لینک مستقیم


انتقال موج رادیو

تحقیق در مورد ایجاد شکل موج مربعی و مستطیلی با مولتی ویبراتور

اختصاصی از حامی فایل تحقیق در مورد ایجاد شکل موج مربعی و مستطیلی با مولتی ویبراتور دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 4

 

به نام خدا

ایجاد شکل موج مربعی و مستطیلی با استفاده از مولتی ویبراتور

یک موج مربعی با آرایش یک مولتی ویبراتور می تواند جهت سوئیچ حالت ها به صورت متناوب ایجاد شود

این عمل با اتصال این مولتی ویبراتور می تواند با یک مدارRc فیدبک انجام شود.

مولتی ویبراتور پایدار خروجی با طول زمانی از قبل تعیین شده را در پاسخ به یک تریگر کوتاه در ورودی ایجاد می شود

این طول زمانی توسط قطعات زمان بندی معینی از مقادیر در مدار تنظیم شده است

مولتی ویبراتور پایدار در خروجی تولید یک شکل موج مستطیلی میکندو به ورودی ان هم هیچ سیگنالی نمی دهیم

مقادیر قطعات زمان بندی شده به فرگانس سیگنال خروجی در مدار مشخص شده است

عملکرد یک مولتی ویبراتور پایدار

یک نوع مدار مولتی ویبراتور از ترکیبی از فیدبک منفی و مثبت استفاده شده است و با هم تشکیل یک شکل موج مستطیلی را می دهند

حالت پایداری در خروجی نداشتیم و یک مدار تک پایدار است

آزمایش 3-18 – مولتی ویبراتور بی استابل: مدار بی استابل شکل زیررا ببینید . اگر آمپر امپ ولتاژ اشباعV 10± را داشته باشد و اگر مقدار cz 0|01µf و R1 = 10k Ω باشد مقدر R2 و R را طوری تعیین میکنیم که فرکانس نوسان 1khz شده و و شکل موج مربعی با پیک تو پیک 10v داشته باشیم

تولید پالس استاندارد مولتی ویبراتور مونو استابل

تایمر مدار مجتمع: مدار 555 که دارای مقایسه کننده است که روی فلیپ فلاپ و بافروترانزیستوری اجرا میشود که خازن را شارژ میکند

مقایسه کننده 1 را مقایسه کننده آستانه می گویند که خروجی ان را با یک ولتاژ رفرنس تنظیم شده است در vcc ⅔ را تبدیل میکند و مقایسه کننده 2 که مقایسه کننده تریگر است ولتاژ ورودی را با ولتاژ رفرنس داخلی تنظیم میکند در ⅓ vcc مقایسه میکند

کاربرد مولتی ویبراتور مونو استا بل تک پایدار از 555 Ic

عملکرد مولتی ویبراتور مونو استابل ( تک پایدار)

همچنین مولتی ویبراتور باعث شارژ خازن با جریان تنظیم شده توسط مقاومت خارجی عمل میکند موقعی که این مولتی ویبراتور تریگر شده است شبکه در حال شارژ در طول فاصله های زمان بندی سیکل میکند فاصله های زمان بندی شده کل شامل را زمان دریافت کننده لازم برای شارژ خازن است که تا حداکثر سطح آستانه می باشد زمانی که vcc بالا به ورودی تریگر اعمال شده است خروجی مقایسه گر تریگر پایین است خروجی فلیپ فلاپ بالا میرود و ترانزیستور هم وصل می شود و خازن تاپتانسیل زمین شارژ شده و خروجی مدار 555 پائین است زمانی که ولتاژ منفی به ورودی مقایسه گر تریگر اعمال شده خروجی تریگر بالا میرود زمانی که پالس تریگر اعمال شده خروجی تریگر بالا میرود زمانی که پالس تریگر به پائین ⅓ ولتاژ vcc میرسد خروجی فیلپ فلاپ کم می شود و در خروجی مدار 555 بالا رفته و ترانزیستور قطع میشود.

مسئله طراحی : Ic 555 را به صورت یک مولتی ویبراتور مونو استابل طراحی کنید که پالس خروجی عرض پالس تابعی از مقادیر خازنی و مقاومت خارجی میباشد

بازه گسترده ای از عرض پالس ها میتواند با تغییر این مقادیر قطعات به دست امده باشند

IC555 برای کاربرد فراکانس پائین معمولی است اما نمب تواند زمانی که زمان های کوچکتری لازم است استفاده شده باشد

555 برای راه اندازی با یک ولتاژ منبع تغذیه با بازه ای از 5 – 18v طراحی شده است

یک مولتی ویبراتور آاستابل با استفاده از ic555

طراحی: 555Ic را به صورت یک مولتی ویبراتور آاستابل به ازا یک فرکانس خاص و سیکل کامل طراحی نمائید فراکانس 50 KHZ و سیکل را به صورت 75 % فرض نمائید اجازه دهید c= 1nf باشد0

موقعی که 555 به مونو استابل متصل شده است سیگنال خارجی اعمال شده به ترمینال ولتاژ کنترل باعث تغییر زمان خازن زمان بندی و عرض پالس خواهد شد

اگر این مولتی ویبراتور با یک یا یک قطار پالس پیوسته تریگر شده باشد عرض پالس خروجی توسط سیگنال خارجی مدوله خواهد شد

این مدار را در یک مدولاتور عرض پالس مینامند یک مدولاتور وضعیت پالس میتواند با استفاده از مد تک پایدار طراحی شود

یک سیگنال مدوله کننده اعمال شده به ترمینال ولتاژ کنترل باعث تغییر موقعیت پالس خواهد شد یک ژنراتور خطی میتواند با استفاده از مد تک پایدار 555 ساخته شده باشد اگرR یا یک منبع جریان ثابت عوض شده باشد

طراحی: از مدار مولتی ویبراتور تک پایدار جهت طراحی یک فاکنشن ژنراتوری ارزان استفاده کنید که خروجی موج سینوی مربعی 6 مثلثی را در فرکانس حداکثر چند MHZ فراهم می سازد

طراحی یک سنسور نوری دارای امپرانس خروجیkz2 بوده و یک شکل موج مثلثی را به صورت نشان داده شده ایجاد مینماید و این در زمانی است که نور آشکار شده است

مداری را طراحی نمائید که تولید یک پالس خروجی مستطیلی با طول زمانی ms 300 و بزرگی حداقل 47 در زمان اعمال شکل موج مثلثی مینماید


دانلود با لینک مستقیم


تحقیق در مورد ایجاد شکل موج مربعی و مستطیلی با مولتی ویبراتور

محاسبه عرض موج شکن 33 ص

اختصاصی از حامی فایل محاسبه عرض موج شکن 33 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 32

 

محاسبه عرض موج شکن (B):

 

محاسبه ارتفاع سازه :

برای محاسبه ارتفاع سازه ابتدا باید میزان بالا روی موج را محاسبه کنیم .

 

 

 

 

 

 

با این فرض که روگذری نداشته باشیم و باتوجه به جدول (C.E.M.)VI-5-5 برای Ru2% داریم :

A=0.96

B=1.17

C=0.46

D=1.97

 

 

 

محاسبه ضخامت لایه آرمور :

 

تعداد سنگهای مورد نیاز برای واحد سطح :

ضریب تخلخل شیب : طبق جدول (C.E.M.)VI-5-51 ،‌این ضریب برابر 0.37 در نظر گرفته می‌شود .

 

 

طراحی لایه فیلتر :

طراحی براساس وجود یک لایه فیلتر انجام می‌شود .

 

دو لایه سنگ برای ساخت فیلتر مورد استفاده قرار می‌گیرد که وزن سنگ‌های مورد استفاده برابر است با که M وزن سنگ لایه آرمور می‌باشد .

 

طبق جدول (C.E.M.)VI-5-50،‌بهترین اندازه سنگ‌ مورد استفاده در لایه فیلتر برابر 226.8 kg می‌باشد .

ضخامت لایه فیلتر :

 

 

طراحی هسته :

طراحی هسته براساس توصیه‌های C.E.M. انجام می شود .

 

 

 

طبق جدول VI-5-50 وزن سنگ مورد استفاده در هسته برابر 11.34kg می باشد .

طراحی پنجه :

عرض پنجه :

 

 

 

لذا عرض پنجه برابر 5(m) در نظر گرفته می‌شود .

 

ارتفاع پنجه:

 

 

حال باید اندازه سنگهای مورد استفاده در پنجه را بدست آوریم . طبق گراف VI-5-45 داریم :

 

 

 

در نتیجه وزن سنگها را 1.31 در نظر می‌‌گیریم .


دانلود با لینک مستقیم


محاسبه عرض موج شکن 33 ص

تله خط یا تله موج

اختصاصی از حامی فایل تله خط یا تله موج دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

تله خط یا تله موج (line trap)

تله خط یا تله موج (line trap)

نوشته شده توسط Admin در تاریخ ۱۳۸۶/۱۰/۰۵ (747 بار خوانده شده)

دو منظور اساسی از بکارگیری تله خط در شبکه دنبال می شود :1- خط یک امپدانس تعریف شده بدون توجه به شرایط بهره برداری در شبکه فشار قوی پشت تله خط (این ویژگی تله خط مانع اتلاف بیهوده قدرت سیگنال کاربر در اثر نشت آن به شبکه پشت تله خط، که ممکن است با کلید زنی آرایشهای مختلفی داشته باشد، خواهد شد). 2- محدود کردن سیگنالهای مخابراتی به بخشی از شبکه انتقال انرژی که تله خط در انتهای آن قرار دارد (شبکه مخابراتی) و جلوگیری از نفوذ این سیگنالها به شبکه های مجاور (چنانچه این هدف برآورده شود می توان در بخشهای دیگر شبکه مجدداً از باندهای فرکانس مشابه استفاده نمود) .  ساختمان تله خط در شکل 1 اجزاء اصلی تشکیل دهنده یک تله خط LT معرفی شده اند. از میان آنها عناصر اصلی تله خط LT ، که معرف رفتار وسیله در شبکه انتقال انرژی و شبکه مخابراتی هستند، در شکل 5 نشان داده شده اند. این اجزاء عبارتند از :1- پیچک اصلی (Main coil) 2- وسیله تنظیم (Tuning device) 3- وسیله محافظ (Protective device)یک تله خط با اجزاء فوق برای نصب در حد فاصل نقطه ورودی سیگنال کاربر و سایر تجهیزات شبکه قدرت نظیر تسمه ها و ترانسفورماتورها در نظر گرفته می شود. پیچک اصلی همراه با وسیله تنظیم، در حالیکه از امیدانس قابل اغماضی در فرکانس شبکه انتقال انرژی (50 یا 60 هرتز) برخوردار می باشد، در برابر یک یا چند فرکانس کاربر و با باند فرکانسی،  امیدانس نسبتاً بزرگی از خود نشان داده و مایع نفوذ سیگنالهای مخابراتی به محیط سست می گردد. در یک بررسی دقیق (هنگام ارزیابی فنی پیشنهادهای مختلف) لازم است وظیفه و مشخصه های الکتریکی و غیرالکتریکی سایر اجزاء تله خط نیز مورد توجه قرار گیرند :4- ترمینالهای اتصال تله خط به شبکه فشار قوی 5- حلقه محافظ کرونا 6- اسپایدر (Spider)7- جمعه آویز (Suspension ring) 8- تسمه های نگهدارنده (Insulated tie bars)9- پایه (جهت نصب تله خط روی پایه)10- توری جهت ممانعت از ورود پرندگان  مشخصات عمومی اجزاء یک تله خط الف) پیچک اصلی (Main coil) پیچک اصلی نقش یک اندوکتیویته را در تله خط ایفاء می کند. یک تله خط در محل ورود خط انتقال به پست فشار قوی و سری با خط قرار می گیرد. به همین دلیل پیچک اصلی که رابط واقعی شبکه انتقال انرژی و پست فشار قوی است، علاوه بر شرایط آب و هوایی محل پست باید قادر باشد کلیه مشخصات لاینفک خط انتقال، نظیر جریان نامی، جریان اتصال کوتاه، تنشهای ولتاژی و مکانیکی شبکه را تحمل نماید. عموماً تله خط ها باید از قابلیت دسترسی (Availability) بالایی برخوردار باشند. در واقع طرح آنها باید آنچنان باشد که در طول عمر مفید خود با حداقل تعداد خرابی و زمان تعمیر و نگهداری مواجه گردند. زیرا هر بار خارج شدن تله خط از مدار به معنی از دست دادن یک خط انتقال انرژی می باشد. از این نظر مشخصات عمومی که در زیر مطرح می شوند حائز اهمیت بسیاری در طراحی ساختمان پیچک اصلی می باشند. پیچک اصلی اساساً از یک هادی که بصورت سیلندری پیچیده می شود تشکیل شده است. در دو انتها، پیچک به ترمینالهایی ختم می شود که از یک طرف به خط انتقال و خازن کوپلاژ و از سمت دیگر به پست فشار قوی متصل می گردد. هادی پیچک اصلی غالباً از جنس آلومینیوم و بصورت رشته ای (Stranded) با مقطع مستطیلی ساخته می شود. انزولاسیون مثال حلقه های مجاور پیچک به دو روش کلی تأمین می گردد. هر یک از این روشها دارای مزایا و معایبی هستند که در زیر بررسی می شوند :1- روش اول: پیچک اصلی با عایق هوا (Non-insulated / Air-insulated) در این روش که روش متداولتری است، هادی آلومینیومی در حالیکه فاقد پوشش عایقی بوده و مستقیماً با هوای آزاد در تماس است، پیچیده می شود. استقامت الکتریکی میان حلقه ها توسط فواصل هوایی تأمین می گردد. این فواصل هوایی از نظر فیزیکی توسط مجموعه ای از فاصله نگهدارها (Spacers) و با نوارهای عایقی از جنس Fiberglass حفظ می شوند. به منظور افزایش استقامت این عایقها در برابر شرایط مختلف آب و هوایی نوعی Rosin هم به آن اضافه می کنند. در هنگام وقوع یک اتصال کوتاه، نیروهای حاصله توسط این فاصله نگهدارها و یا نوارهای عایقی جذب می شوند. با این آرایش هر یک از رشته های سازنده هادی اصلی در مجاورت هوا اکسیده شده و یک لایه عایقی در سطح خارجی خود پدید می آورند. این لایه عایقی می تواند شدت جریانهای گردابی (Eddy current) ناشی از میدان مغناطیسی قوی درون پیچک را تغلیل داده و از تلفات حرارتی پیچک بکاهد. ضمن اینکه تبادل حرارتی میان پیچک و محیط اطراف بدون واسطه صورت می پذیرد. در این روش هادی پیچک مستقیماً در معرض آلودگی محیط واقع شده و ممکن است در شرایط بحرانی، فاصله خزشی (Creepage distance) میان حلقه ها نیازمند توجه خاص باشد. برای اینکه اشیاء خارجی و پرندگان نتوانند با وارد شدن به درون پیچک اتصال کوتاهی میان حلقه ها ایجاد نمایند، باید در اماکنی که احتمال این خطر پیش بینی می شود از تورهایی در طرفین پیچک (Bird barriers) به منظور ممانعت از ورود اشیاء خارجی و یا پرندگان استفاده نمائیم. 2- روش دوم : پیچک اصلی با پوشش عایق (Insulated) در این روش ابتدا هادی آلومینیومی در یک پوشش عایقی از جنس Fiberglass و Resin پوشانده شده و در مرحله بعد پیچانده می شود. به این ترتیب پس هر دو حلقه مجاور، دو لایه عایقی قرار گرفته و پیچک از استقامت مناسب در برابر تنشهای الکتریکی و مکانیکی برخوردار خواهد بود (در این وضعیت نیروهای مکانیکی در امتداد محیط هر حلقه بصورت یکنواخت توزیع می شوند، برخلاف روش اول که این نیروها را تنها نقاط خاصی از محیط حلقه که دارای فاصله نگهدار هستند، تحمل می نمایند). در این روش هادی پیچک مستقیماً در مجاورت هوای آزاد قرار ندارد. این ویژگی باعث می شود که مشکل آلودگی محیط و اتصال کوتاه میان حلقه ها بدنبال ورود اشیاء خارجی و پرندگان به درون پیچک مطرح نبوده و بنابراین لزومی به وجود توری (Bird barrier) نیز احساس نگردد. تبادل حرارتی با محیط در این روش با واسطه و دشوارتر از روش نخست صورت می پذیرد. اثرات حرارتی و دینامیکی جریان اتصال کوتاه، جریان عادی شبکه و اضافه بارها ممکن است باعث ترک خوردن پوشش رزینی شده و این از جمله معایب این روش است. بکار بردن روکش عایقی روی هادی پیچک اصلی، ظرفیت خازن خودی (Self-capacitance) پیچک را افزایش داده و به این ترتیب فرکانس تشدید آن را کوچکتر می نماید، تغییری که از دید تبادل اطلاعات در شبکه مخابراتی، مطلوب ارزیابی نمی شود. بسته به جریان نامی شبکه نقل انرژی و اندوکتیویته مورد نیاز شبکه مخابراتی، پیچک با سیم ساده و با دوبل و بصورت تکه لایه با چند لایه پیچیده می شود. چند لایه پیچیده شدن پیچک ظرفیت خودی آن را افزایش می دهد و همانطوریکه گفته شد این یک مزیت برای آن محسوب نمی گردد. از نظر مکانیکی حداکثر نیروی وارده به تله خط، حین عبور جریان اتصال کوتاه و در یک نخست آن اتفاق می افتد. علاوه بر نیروهای وارده در دو جهت محوری و شعاعی، باید نیروهایی را که از طریق ترمینالها اعمال می شوند نیز در نظر گرفته شوند. معمولاً کنترل نیروهای وارده از طریق ترمینالها با اصلاح آرامش فیزیکی آنها صورت می پذیرد. همچنین باید از عبور جریان اتصال کوتاه از طریق اسپایدرها احتراز شود، زیرا این پدیده سست ظهور نیروهای الکترومغناطیسی بزرگ می گردد. مقطع پیچک اصلی غالباً بصورت مستطیلی ساخته می شود. با این شکل اگر پیچک طوری پیچیده شود که بهای کوچکتر مستطیل متوجه سطوح جانبی سیلندر باشد، پیچک از استقامت بیشتری برخوردار خواهد بود. در هر صورت استقامت مکانیکی پیچک اصلی در برابر نیروهای منقبض شونده محوری و نیروهای منبسط شونده شعاعی باید طی تله خط را می توان برحسب وزن، ابعاد، تعداد، فواصل هوایی مجاز، مشخصات ترانسفورماتور ولتاژ خازنی (CVT) ، پست و ... تصور مختلف آویز، عمودی (روی CVT با مقره ایکایی) و


دانلود با لینک مستقیم


تله خط یا تله موج

دانلود تحقیق و بررسی در مورد محاسبه عرض موج شکن 33 ص

اختصاصی از حامی فایل دانلود تحقیق و بررسی در مورد محاسبه عرض موج شکن 33 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 32

 

محاسبه عرض موج شکن (B):

 

محاسبه ارتفاع سازه :

برای محاسبه ارتفاع سازه ابتدا باید میزان بالا روی موج را محاسبه کنیم .

 

 

 

 

 

 

با این فرض که روگذری نداشته باشیم و باتوجه به جدول (C.E.M.)VI-5-5 برای Ru2% داریم :

A=0.96

B=1.17

C=0.46

D=1.97

 

 

 

محاسبه ضخامت لایه آرمور :

 

تعداد سنگهای مورد نیاز برای واحد سطح :

ضریب تخلخل شیب : طبق جدول (C.E.M.)VI-5-51 ،‌این ضریب برابر 0.37 در نظر گرفته می‌شود .

 

 

طراحی لایه فیلتر :

طراحی براساس وجود یک لایه فیلتر انجام می‌شود .

 

دو لایه سنگ برای ساخت فیلتر مورد استفاده قرار می‌گیرد که وزن سنگ‌های مورد استفاده برابر است با که M وزن سنگ لایه آرمور می‌باشد .

 

طبق جدول (C.E.M.)VI-5-50،‌بهترین اندازه سنگ‌ مورد استفاده در لایه فیلتر برابر 226.8 kg می‌باشد .

ضخامت لایه فیلتر :

 

 

طراحی هسته :

طراحی هسته براساس توصیه‌های C.E.M. انجام می شود .

 

 

 

طبق جدول VI-5-50 وزن سنگ مورد استفاده در هسته برابر 11.34kg می باشد .

طراحی پنجه :

عرض پنجه :

 

 

 

لذا عرض پنجه برابر 5(m) در نظر گرفته می‌شود .

 

ارتفاع پنجه:

 

 

حال باید اندازه سنگهای مورد استفاده در پنجه را بدست آوریم . طبق گراف VI-5-45 داریم :

 


دانلود با لینک مستقیم


دانلود تحقیق و بررسی در مورد محاسبه عرض موج شکن 33 ص