حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد مباحثی پیرامون روشهای درست مطالعه ریاضیات

اختصاصی از حامی فایل تحقیق در مورد مباحثی پیرامون روشهای درست مطالعه ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 9

 

«مباحثی پیرامون روشهای درست مطالعه ریاضیات»

با سلامیکی از دوستان خوب دانش آموز، در نامه ای خصوصی سوالی قریب به مضمون زیر را مطرح کردند:«من دانش آموز سوم دبیرستان رشته ی ریاضی هستم و در یکی از دبیرستانهای نهاوند درس میخوانم.آقای سهرابی من ریاضیات و فیزیکم خوبه و در سطح بالاست اما امسال میخوام طوری باشم که هم در تست و هم در تشریحی موفق ترین باشم چه در حسابان و ...لطفا منو راهنمایی کنید که چه جوری بخونم و روزی چه قدر، چه درسهایی رو مطالعه کنم که آمادگی برای هر گونه تست و تشریحی رو داشته باشم و از چه کتابهایی استفاده کنم»بنده به عنوان یک مشاور، این سوالات را بارها و بارها شنیده ام و متناسب با فرد سوال کننده به آن پاسخ داده ام. سوال این دوست عزیز، بهانه بسیار خوبی است که در این اتاق به طور مفصل به این پرسشها - که کاملا به حق و مورد نیاز بسیاری از دانش آموزان و حتی دانشجویان است - پاسخ دهیم و صد البته با این کار به یکی از اهداف اتاق ریاضیات نیز جامه عمل بپوشانیم. سعی می کنیم فقط در همین پست به اینگونه سوالات پاسخ دهیم و از دوستان دیگر نیز انتظار داریم که با نقد مطالبی که در این پست خدمتتان تقدیم می شود و یا با ارائه تجربیات خود در حد امکان به اینگونه سوالات پاسخ دهند. دست حق نگه دارتان-----------------------------------------------------------------سوال بالا را به دو مرحله تقسیم می کنیم:(الف) چگونه می توان کتب درسی ریاضی را به طور عمقی مطالعه کرد؟(ب) چگونه می توان در تست زدن موفق شد؟ آیا واقعاً راه میانبری - همانگونه که بسیاری از موسسات کنکور ادعا می کنند - وجود دارد؟به هر یک از دو سوال بالا به شیوه ترتیبی و البته به صورت کاملا خلاصه پاسخ می دهیم. دوستان عزیز در هر مورد ، اگر ابهامی دیدید بفرمایید تا درباره آن بیشتر بحث کنیم.پاسخ سوال (الف): 1- برای خودتان برنامه هفتگی داشته باشید به گونه ای که اگر کسی از شما پرسید مثلاً روز دوشنبه ساعت 10 صبح یا پنجشنبه ساعت 5 بعد از ظهر قرار است چه کنید، برای آن پاسخ دقیقی داشته باشید. برنامه شما باید کاملا متعادل و به دور از هر گونه افراط و تفریط باشد. یک نوجوان دانش آموز و یا یک جوان دانشجو برای پیشرفت خود، غیر از فعالیتهای عمیق علمی متناسب با رشته خود، احتیاج به استراحت و خواب مناسب (حداقل 7 ساعت)، ورزش، دیدار دوستان و آشنایان، شرکت در فعالیتهای عبادی، اجتماعی، فرهنگی و سیاسی، دیدن برنامه های تلوزیونی، مطالعات غیر درسی مانند مطالعه روزنامه ها، مجلات، رمان و ... دارد. برنامه را به گونه ای طراحی کنید که اولا همه فعالیتهای لازم (حتی خواب و بیداری و غذا خوردن) شما را پوشش دهد و ثانیا شما را خسته نکند. توجه کنید که همه روشهای مطالعه که بعد از این توضیح خواهیم داد، باید تحت همین برنامه سازماندهی شود.2- متن درس را مانند کسی بخوانید که می خواهد آنرا تدریس کند. حال ببینیم یک معلم خوب قبل از تدریس چه می کند: او با استفاده از تجربیات قبلی خود، ابتدا درس را کاملا و به طور عمیق مطالعه و سپس از مطالب آن خلاصه برداری می کند. به مطالب و تمرینات کتاب بسنده نمی کند و به وسیله کتب معتبر ، مطالب و مسائل جدید و جالبی به طرح درس خود می افزاید. گاهی هم برای اینکه بهتر و راحت تر تدریس کند، جداولی تهیه می کند و یا وسایلی با دست خود می سازد.بنابر این «اگر می خواهید خوب بخوانید، همانند یک معلم بخوانید.» اگر برایتان امکان دارد درس را برای دیگری تدریس کنید و به او اجازه دهید از شما سوالاتی درباره همان درس بپرسد. اگر چنین امکانی برایتان نیست، بعد از مطالعه و خلاصه برداری، کتاب را کنار بگذارید و همانند یک معلم همان درس را برای خودتان تدریس کنید. دقت کنید که میزان مهارت شما در تدریس یک درس معمولا برابر است با میزان فهم مطالب آن درس توسط شما.3- خودتان را به فکر کردن روی مساله های ریاضی عادت دهید. توجه کنید که بسیاری از مسائل خوب به راحتی حل نمی شوند بنابر این اگر در حل هر مساله ای موفق نشدید، ناامید نشوید. برای حل مسائل تلاش کنید هر چند اگر ساعتها و روزها وقت شما را بگیرد. از وقتهای اضافی (هنگام پیاده روی - ایستادن در صفهای مختلف اتوبوس، خرید نان و ...) برای حل مسائل و فکر کردن روی آنها استفاده کنید. روی مسائل کتابهای درسی خود خوب فکر کنید و برای حل آنها وقت بگذارید اما به آنها اکتفا نکنید. همیشه یک مساله جدید برای حل در ذهنتان داشته و به دنبال مسائل جدید باشید. از هیچ مساله ای نترسید. از مسائل مربوط به المپیادهای سالهای گذشته کشوری و بین المللی اطلاع داشته باشید و اگر فرصت کردید راه حل آنها را نیز پیدا کنید. در کل سعی کنید دایرة المعارف مسائل ریاضی ذهنتان را -یعنی مجموعه مسائلی که دیده اید نه مسائلی که حل کرده اید- دائماً توسعه دهید. اگر چند ماه خودتان را به این کارها عادت دهید، مسائل کتابهای درسی - و نتیجتاً تستهای کنکور- برایتان کاملا پیش پا افتاده خواهد شد. به امید خدا در همین تایپیک به بعضی از کتابهای معتبر مساله نیز اشاره خواهد شد.4- مسائل جدید طراحی کنید. متن بعضی از مسائل کتاب را (بعد از حل آنها) به گونه ای مناسب تغییر دهید و سپس آنرا حل کنید. مثلا صورت و مخرج مساله را با هم عوض کنید، مثبها را منفی و منفی ها را مثبت کنید، اعداد را تغییر دهید، به مساله یک رادیکال اضافه یا کم کنید، اگر مساله ای با یک فرض به شما داده شده است فرض را بردارید و بررسی کنید که آیا مساله بدون آن فرض نیز درست یا نه، اگر درست است آنرا بدون آن فرض حل کنید و اگر درست نیست برای آن، مثال نقض ارائه کنید. بررسی کنید که آیا عکس مسائلی که به صورت شرطی داده شده اند درست است یا نه و ...5- روی بعضی از مسائل گروهی کار کنید. می توانید چند مساله (از کتاب یا خارج آن) انتخاب و بین خود تقسیم و در فرصتی که معین می کنید روی آنها کار کنید و سپس راه حلها را با یکدیگر بررسی نمایید و اگر توانستید راه حل این مسائل را با معلمین خود نیز در میان بگذارید.6- از مطالعه مجلات ریاضی (همانند «مجله برهان» و یا «رشد ریاضی») غافل نشوید. این مجلات تاثیر بسیار خوبی روی خواننده خود می گذارند. 7- اما آخرین پیشنهاد در این قسمت: در مسابقات علمی شرکتی فعال داشته باشید، چه در آنها برنده شوید، چه نشوید. اگر در شهر شما دانش آموزانی هستند که در مسابقات ریاضی موفق بوده اند، با آنها ارتباط علمی برقرار و از تجربیاتشان استفاده کنید. در حد توانتان در سمینارهای علمی مدرسه، شهر و ... شرکت کنید و اگر می توانید برای این سمینارها مقاله ای بنویسید و در آنها درباره کارتان سخنرانی کنید. گاهی هم به دانشگاههای شهرتان سری بزنید و اگر اجازه دادند از کتابخانه و فضای علمی آنجا استفاده کنید.پاسخ سوال (ب):


دانلود با لینک مستقیم


تحقیق در مورد مباحثی پیرامون روشهای درست مطالعه ریاضیات

تحقیق و بررسی در مورد رابطه ریاضیات و هنر

اختصاصی از حامی فایل تحقیق و بررسی در مورد رابطه ریاضیات و هنر دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

رابطه ریاضیات و هنر مقدمه:اهمیت فوق العاده ای که ریاضیات ، در جامعه ی امروزی و در فعالیت گوناگون ترین تخصص ها دارد، بر کسی پوشیده نیست . باوجود این ، خیلی زیاد نیستند کسانی که علاقمند به ریاضیات باشند. البته تنها کسانی که کار و فعالیتشان به ریاضیات مربوط می شود ، علاقمند به ریاضیات نیستندبلکه کم هم نیستند مشتاقانی که ساعت های فراغت خود را ، با ریاضیات می گذرانند. همه ی این ها چه حرفه ای ها و چه علاقمندان ، نه تنها فایده و اهمیت ریاضیات را می شناسند بلکه در ضمن ، به ریاضیات شوق می ورزند و می توانند زیبایی و ظرافتی که در مسأله ها ، قضیه ها و روش های ریاضی وجود دارد را احساس کنند . احساس و منطق را با هیچ نیرویی نمی توان از هم جدا کرد و هر جدایی ساختگی منجر به تحریف هر دوی آنها می شود . هر احساس اگر احساس واقعی باشد، خردمندانه است چراکه احساس واقعی نمی تواند جدا از اندیشه و خرد آدمی پدید آید. ارتباط هنر و ریاضی : هر انسانی از تماشای چشم انداز یک دامنه ی سر سبز آرامش خود را باز می یابد ، در عین حال ، به فکر فرو می رود . شاعر احساس درونی خود را بیان می کند . نقاش با قلم و بوم خود تلاش می کند که دیگران را در شادی خود شریک کند . گیاه شناس در پی گیاه مورد نظر در رده های خاصی می رود . زبان شناس می خواهد ریشه و سر چشمه ی نام گذاری گیاه و دلیل آن را پیدا کند . داروشناس در جستجوی ویژگی درمانی گیاه است و ریاضی دان نحوه ی قرار گرفتن گل و گلبرگ ها یا اندازه و شکل ها را مورد مطالعه قرار می دهد . ولی هم گیاه عضوی یگانه است و هم انسان و اگر بخواهیم برخورد انسان با گیاه را بررسی کنیم ناچاریم ، به همه ی این جنبه ها توجه داشته باشیم . ریاضیات و رابطه آن با هنر : " اشر" نقاش معروف هلندی در سال 1971 میلادی در سن 72 سالگی و یک سال پیش از مرگ خود نوشت : « وقتی که هوشمندانه با رمز و راز های دور و بر خود برخورد کردم و وقتی به تجزیه و تحلیل مشاهده های خود پرداختم ، به ریاضیات رسیدم . من آموزش جدی در دانش ندیده ام ولی گمان می کنم بیش تر با یک ریاضی دان وجه مشترک داشته باشم تا با یک هنرمند . » و " رودن" (1840- 1917 ) مجسمه ساز مشهور فرانسوی می گوید : « من یک رویا پرداز نیستم ، بلکه یک ریاضی دان ام . مجسمه های من تنها به خاطر این خوب اند که ساخته و پرداخته ی اندیشه ی ریاضی اند . » از آن طرف "ج.ه هاردی" ریاضی دان انگلیسی معتقد است : « معیار ریاضی دان مانند معیار نقاس یا شاعر ، زیبایی است . اندیشه ها هم مانند رنگ ها یا واژه ها باید در هماهنگی کامل و سازگار با یکدیگر باشند . زیبایی نخستین معیار سنجش است . » جایگاه هنر در درس ریاضی : اگر این را بپذیریم که ، تصور و خیال ، یکی از سرچشمه های اصلی آفرینش های هنری است ، آن وقت ناچاریم قبول کنیم که ، در ریاضیات هم ، دست کم عنصر های زیبایی و هنر وجود دارد چرا که مایه ی اصلی کشف های ریاضی ، همان تصور و خیال است . به قول ولادیمیر ایلیچ نویسنده ی « دفاتر فلسفی » ، تصور و خیال « حتی در ریاضیات هم لازم است ، حتی کشف حساب دیفرانسیل و انتگرال هم ، بدون تصور و خیال ، ممکن نبود . » با هیچ نیرنگی ، نمی توان از کشش انسان ها به سمت زیبایی ها جلوگیری کرد و آن چه زشت و نازیبا است را جانشین زیبایی ها کرد . آدمی ، از همان روزهایی که می شنود ، می بیند و درک می کند ، از موسیقی و تقاشی و شعر لذت می برد و چه به صورت لالایی مادر باشد یا آهنگ گوش نواز چایکووسکی ، چه بیتی عامیانه و کوچه باغی باشد یا سرودی از لسان الغیب ، چه هنرمندانه قالی های دست باف باشد و چه ظرافت ها و رنگ های چشم نواز بهزاد و کمال الملک ، همه جا انسان را به سوی خود می کشاند و غرق


دانلود با لینک مستقیم


تحقیق و بررسی در مورد رابطه ریاضیات و هنر

اقدام پژوهی تدریس ریاضیات دوره متوسطه

اختصاصی از حامی فایل اقدام پژوهی تدریس ریاضیات دوره متوسطه دانلود با لینک مستقیم و پر سرعت .

اقدام پژوهی تدریس ریاضیات دوره متوسطه


اقدام پژوهی تدریس ریاضیات دوره متوسطه

 اقدام پژوهی بررسی چالش های  تدریس درس ریاضیات دوره متوسطه

اقدام پژوهی حاضر شامل کلیه موارد مورد نیاز و فاکتورهای لازم در چارت مورد قبول آموزش و پرورش میباشد. این اقدام پژوهی کامل و شامل کلیه بخش های مورد نیاز در بخشنامه شیوه نامه معلم پژوهنده میباشد.

فرمت فایل: ورد قابل ویرایش

تعداد صفحات: 14

 

 

 

 

 

فهرست مطالب

چکیده

مقدمه

هدف تحقیق 

گردآوری اطلاعات (شواهد1)

تجزیه و تحلیل اطلاعات  

خلاصه یافته های اولیه

اصول و مبانی تدریس درس ریاضی 

معیارهای ارزشیابی 

چگونگی اجرای راه جدید 

گرد آوری اطلاعات ( شواهد 2 )

راه کار ها و پیشنهادات  

نتیجه گیری 

منابع:

 

چکیده

  امروزه بحث جهانی شدن GLOBALZATION امروزه منجر به بروز چالش هایی در جوامع در حال توسعه شده است. این بحث شرایط ویژه ای را در نظام های تعلیم و تربیت جهانی پدید آورده است. بدین صورت اگر نظام های آموزشی، موقعیت کنونی را به درستی درک و تحلیل نمایند، می توانند در برابر آن دست به انتخاب درست بزنند و تهدیدهای مبهم را به فرصت های ممتاز تبدیل نمایند و در غیر این صورت با مشکلات فرهنگی، اجتماعی اقتصادی متعددی روبرو خواهند شد که جوامع ساده و اولیه را زمین گیر خواهد نمود. در این مقاله موارد زیر مورد بررسی  قرار گرفته است.

1- بررسی تأثیرات فرهنگی، اجتماعی، اقتصادی و فلسفی روند جهانی شدن.

2- چهارمین گزارش یونسکو در زمینه ی ((معلمان و تدریس در جهان در حال تغییر)) در باب ((ناتوانی نظام های آموزش و پرورش)) در جهت افزایش منزلت معلمان.

3- نقش نظام های آموزشی و ویژگی های رهبران فرهنگی در عصر جهانی شدن.

4- ابعاد تربیت انسان در عصر جهانی شدن.

5- تحول در کلاس درس


دانلود با لینک مستقیم


اقدام پژوهی تدریس ریاضیات دوره متوسطه

تحقیق ریاضیات

اختصاصی از حامی فایل تحقیق ریاضیات دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

ریاضیات

ریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است.

ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد.

نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد.

ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند.

چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم. ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.

حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است.

در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است. بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد. هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.

دید کلی

پیشرفت ریاضیات به این جا نمی‌رسند که قضیه‌های تازه‌ای روی هم انباشته شود، بلکه این پیشرفت همراه با تغییر کیفی ریاضیات است. ولی این تغییر کیفی از راه شکست و نابودی نظریه‌های موجود به دست نمی‌آید بلکه از راه عمیق‌کردن و تعمیمی نظریه‌های موجود و از راه بوجود آمدن نظریه‌های تعمیم‌دهنده تازه که بر پایه پیشرفت‌های قبلی تدارک دیده شده است) صورت می‌گیرد.

دوره‌های اساسی تاریخ ریاضیات

با یک نظر کلی در تاریخ ریاضی ، می‌توان چهار دوره اساسی که از جنبه‌های کیفی با هم اختلاف دارد تشخیص داد. البته مرزبندی دقیق این دوره‌ها ممکن نیست، زیرا مرزهای اساسی هر یک از آنها کم و بیش به تدریج به وجود آمده است، ولی اختلاف این دوره‌ها و عبور از یک دوره به دوره دیگر به خوبی مشخص است.

نخستین دوره

نحستن دوره ، عبارت از دوره‌ای است که ضمن آن ریاضیات به عنوان یک دانش مستقل و نظری به وجود آمد. ان دوره از زمان‌های باستانی آغاز و به سده پنجم پیش از میلاد پایان می‌پذیرد و این به شرطی است که ریاضیات "خالص" و بستگی منطقی بین قضیه‌ها و اثبات آنها ، زودتر از آن ، در یونان به وجود نیامده باشد (در سده پنجم پیش از میلاد ، حکمهای منظم هندسی مثل "مقدمات" بقراط(= هیپوکراتوس‌) خیوسی به وجود آمد). این دوره ، دوره شکل گرفتن حساب و هندسه است که ما به اندازه کافی آن را بررسی کردیم. در آن زمان ، ریاضیات ، از بستگی مستقیمی که قانون‌های جداگانه و منفرد آن ، با عمل داشتند به وجود آمد، قانون‌هایی که خود زاییده آزمایش‌اند، ولی هنوز به عنوان دستگاه واحدی که به صورت منطقی به هم مربوط باشد تشکیل نشده است. خصلت نظری‌بودن ریاضی که همراه با اثبات منطقی قضیه‌های آن باشد، خیلی به تدریج و متناسب با ماده‌های خام موجود ، به وجود آمد. حساب و هندسه هم از یکدیگر جدا نبود و به طور جدی به هم آمیخته بود.


دانلود با لینک مستقیم


تحقیق ریاضیات

تحقیق چرا باید ریاضیات بخوانیم

اختصاصی از حامی فایل تحقیق چرا باید ریاضیات بخوانیم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

چرا باید ریاضیات بخوانیم؟ (ولادیمر ارنولد)

چرا باید ریاضیات بخوانیم؟راجر بیکن فیلسوف انگلیسی در سال 1267 میلادی پاسخ این سوال را چنین داده است:((کسی این کار را نکند نمیتواند چیزی از بقیه علوم و هر آنچه دراین جهان است بفهمد...چیزی که بدتر است این است که کسانی که ریاضیات نمیدانند به جهالت خودشان پی نمی برند ودر نتیجه در پی چاره جویی بر نمی آیند.))

می توانم همین جا سخنرانیم را پایان دهم اما ممکن است بعضیها فکر کنند که شاید خیلی چیزها در هفت قرن گذشته تغییر کرده باشد....

شاهدی تازه تر می آورم پال دیراک از خالقان مکانیک کوانتومی معتقد است که وقتی تئوری فیزیکی ای را پایه ریزی می کنید نبایدبه هیچ شهود فیزیکی ای اعتماد کنید.پس به چه چیزی اعتماد کنید؟به گفته ی این فیزیکدان مشهور فقط به برنامه ای متکی بر ریاضیات _ولو اینکه در نگاه اول ربطی به فیزیک نداشته باشد.

در حقیقت در فیزیک تمامی ایده های صرفا فیزیکی رایج در ابتدای این قرن را کنار گذاشته اند در حالی که الگوهای ریاضی ای که به زرادخانه فیزیکدان ها راه یافته اند به تدریج معنای فیزیکی یافته اند.در اینجاستکه قابل اعتماد بودن ریاضیات به روشنی رخ مینمایاند.

بنابراین الگوسازی ریاضی روشی پربار برای شناخت در علوم طبیعی است.اکنون می خواهیم الگوهای ریاضی را از نگاهی دیگر یعنی مسئله ی آموزش ریاضی بررسی کنیم.

 سه روش اموزش ریاضیات

در اموزش ریاضیات روسی (هم در دبیرستان و هم در مقاطع بالاتر) ما پیرو نظام اموزشی اروپایی هستیم که بر اساس ((بورباکی ای سازی))ریاضیات بنا شده است (نیکلاس بورباکی نام مستعار گروهی از ریاضیدانان فرانسوی است که ازسال 1939 به انتشار مجموعه ای از کتابها دست زده اندکه در انها شاخه های اصلی ریاضیات جدید به طور اصولی_یعنی به روش اصل موضوعی براساس نظریه ی مجموعه ها_شرح داده شده است.)

اصولی کردن ریاضیات به نوعی تصنعی کردن آموزش آن منجر می شود واین زیانی است که بورباکی ای سازی به آموزش ریاضیات وارد کرده است.نمونه ای شگرف مثال زیر است:

از دانش آموز سال_دومی مدرسه ای در فرانسه پرسیده اند ((دو بعلاوه ی سه چقدر میشود؟)) پاسخ چنین بود ((چون جمع تعویض پذیر است می شود سه بعلاوه ی دو.))

پاسخی واقعا قابل تامل! کاملا درست است اما دانش آموزان حتی به جمع کردن ساده ی این دو عدد هم فکر نکرده اند زیرا در تعلیم انها تکیه بر ویژگی های عملها بوده است. در اروپا معلمان متوجه نارساییهای این روش شده اند و بورباکی ای سازی را کنار گذاشته اند.

طی چند سال گذشته آموزش ریاضیات روسی دستخوش تغییراتی به سبک آمریکایی شده است.اساس این سبک این اصل است: آنچه را که برای کاربردهای عملی لازم است آموزش بدهید.در نتیجه کسی که فکر می کند به ریاضیات احتیاجی نخواهد داشت اصلآ لازم نیست ان را بخواند.ریاضیات درسی اختیاری در دوره ی راهنمایی و دبیرستان است_مثلآ یک سوم دانش آموزان دبیرستانی جبر نمی خوانند.نتیجه ی این امر را در مثال زیر روشن کرده ایم:

در آزمونی برای دانش آموزان چهارده ساله ی آمریکایی از آنها خواسته شده بود که برآورد کنند (نه اینکه حساب کنند بلکه برآورد کنند) که اگر 80 درصد از عدد 120 رابرداریم این عدد چه تغییری می کند.سه نوع پاسخ را


دانلود با لینک مستقیم


تحقیق چرا باید ریاضیات بخوانیم