در این قسم
(دانلود کتاب لاتین با عنوان تئوری تصمیم گیری مالی ( ویژه رشته های مدیریت مالی، اقتصاد و حسابداری عنوان:
Theory of Financial Decision Making : عنوان کتاب
عنوان فارسی: تئوری تصمیم گیری مالی
نویسنده (گان): Janathan E Ingersoll
تعداد صفحات: 391 صفحه
تعداد فصلها: 19 فصل
قیمت: 5000 تومان
قیمت کتاب در بازار بیش از 60000 تومان می باشد اما قیمت این کتاب در این فروشگاه فقط و فقط 5000 تومان می باشد.
این فایل شامل کتاب Theory of Financial Decision Makingدر زمینه مدیریت مالی، اقتصاد و حسابداری به زبان انگلیسی می باشد که می تواند برای افرادی که قصد ترجمه کتابهای معتبر دانشگاهی یا نگارش پایان نامه و مقالات isi و یا ترجمه متون تخصصی برای فعالیت کلاسی را دارند مورد استفاده قرار گیرد. فهرست عناوین این کتاب به شرح زیر می باشد
Utility Theory 1
- 1 Utility Functions and Preference Orderings . . . . . . . . . . . . . . . . . 1
- 2 Properties of Ordinal Utility Functions . . . . . . . . . . . . . . . . . . . 2
- 3 Properties of Some Commonly Used Ordinal Utility Functions . . . . . . . 4
- 4 The Consumer’s Allocation Problem . . . . . . . . . . . . . . . . . . . . 5
- 5 Analyzing Consumer Demand . . . . . . . . . . . . . . . . . . . . . . . . 6
- 6 Solving a Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 9
- 7 Expected Utility Maximization . . . . . . . . . . . . . . . . . . . . . . . 9
- 8 Cardinal and Ordinal Utility . . . . . . . . . . . . . . . . . . . . . . . . . 11
- 9 The Independence Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . 11
- 10 Utility Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
- 11 Utility of Wealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
- 12 Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
- 13 Some Useful Utility Functions . . . . . . . . . . . . . . . . . . . . . . . 16
- 14 Comparing Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . 17
- 15 Higher-Order Derivatives of the Utility Function . . . . . . . . . . . . . . 18
- 16 The Boundedness Debate: Some History of Economic Thought . . . . . . 19
- 17 Multiperiod Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Arbitrage and Pricing: The Basics 22
- 1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
- 2 Redundant Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
- 3 Contingent Claims and Derivative Assets . . . . . . . . . . . . . . . . . . 26
- 4 Insurable States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
- 5 Dominance And Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . 27
- 6 Pricing in the Absence of Arbitrage . . . . . . . . . . . . . . . . . . . . . 29
- 7 More on the Riskless Return . . . . . . . . . . . . . . . . . . . . . . . . . 32
- 8 Riskless Arbitrage and the “Single Price Law Of Markets” . . . . . . . . . 33
- 9 Possibilities and Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 34
- 10 “Risk-Neutral” Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
- 11 Economies with a Continuum of States . . . . . . . . . . . . . . . . . . . 36
CONTENTS vii
3 The Portfolio Problem 38
- 1 The Canonical Portfolio Problem . . . . . . . . . . . . . . . . . . . . . . 38
- 2 Optimal Portfolios and Pricing . . . . . . . . . . . . . . . . . . . . . . . 40
- 3 Properties of Some Simple Portfolios . . . . . . . . . . . . . . . . . . . . 41
- 4 Stochastic Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
- 5 The Theory of Efficient Markets . . . . . . . . . . . . . . . . . . . . . . . 44
- 6 Efficient Markets in a “Riskless” Economy . . . . . . . . . . . . . . . . . 45
- 7 Information Aggregation and Revelation in Efficient Markets: The General
Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
- 8 Simple Examples of Information Revelation in an Efficient Market . . . . . 48
4 Mean-Variance Portfolio Analysis 52
- 1 The Standard Mean-Variance Portfolio Problem . . . . . . . . . . . . . . 52
- 2 Covariance Properties of the Minimum-Variance Portfolios . . . . . . . . . 56
- 3 The Mean-Variance Problem with a Riskless Asset . . . . . . . . . . . . . 56
- 4 Expected Returns Relations . . . . . . . . . . . . . . . . . . . . . . . . . 58
- 5 Equilibrium: The Capital Asset Pricing Model . . . . . . . . . . . . . . . 59
- 6 Consistency of Mean-Variance Analysis and Expected Utility Maximization 62
- 7 Solving A Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 64
- 8 The State Prices Under Mean-Variance Analysis . . . . . . . . . . . . . . 65
- 9 Portfolio Analysis Using Higher Moments . . . . . . . . . . . . . . . . . 65
A The Budget Constraint 68
B The Elliptical Distributions 70
- 1 Some Examples of Elliptical Variables . . . . . . . . . . . . . . . . . . . 72
- 2 Solving a Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 75
- 3 Preference Over Mean Return . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Generalized Risk, Portfolio Selection, and Asset Pricing 78
- 1 The Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
- 2 Risk: A Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
- 3 Mean Preserving Spreads . . . . . . . . . . . . . . . . . . . . . . . . . . 79
- 4 Rothschild and Stiglitz Theorems On Risk . . . . . . . . . . . . . . . . . 82
- 5 The Relative Riskiness of Opportunities with Different Expectations . . . . 83
- 6 Second-Order Stochastic Dominance . . . . . . . . . . . . . . . . . . . . 84
- 7 The Portfolio Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
- 8 Solving A Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 86
- 9 Optimal and Efficient Portfolios . . . . . . . . . . . . . . . . . . . . . . . 87
- 10 Verifying The Efficiency of a Given Portfolio . . . . . . . . . . . . . . . . 89
- 11 A Risk Measure for Individual Securities . . . . . . . . . . . . . . . . . . 92
- 12 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A Stochastic Dominance 96
- 1 Nth-Order Stochastic Dominance . . . . . . . . . . . . . . . . . . . . . . 97
viii CONTENTS
6 Portfolio Separation Theorems 99
- 1 Inefficiency of The Market Portfolio: An Example . . . . . . . . . . . . . 99
- 2 Mutual Fund Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
- 3 One-Fund Separation Under Restrictions on Utility . . . . . . . . . . . . . 103
- 4 Two-Fund Separation Under Restrictions on Utility . . . . . . . . . . . . . 103
- 5 Market Equilibrium Under Two-Fund, Money Separation . . . . . . . . . 105
- 6 Solving A Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 106
- 7 Distributional Assumptions Permitting One-Fund Separation . . . . . . . . 107
- 8 Distributional Assumption Permitting Two-Fund, Money Separation . . . . 108
- 9 Equilibrium Under Two-Fund, Money Separation . . . . . . . . . . . . . . 110
- 10 Characterization of Some Separating Distributions . . . . . . . . . . . . . 110
- 11 Two-Fund Separation with No Riskless Asset . . . . . . . . . . . . . . . . 111
- 12 K-Fund Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
- 13 Pricing Under K-Fund Separation . . . . . . . . . . . . . . . . . . . . . . 115
- 14 The Distinction between Factor Pricing and Separation . . . . . . . . . . . 115
- 15 Separation Under Restrictions on Both Tastes and Distributions . . . . . . 117
7 The Linear Factor Model: Arbitrage Pricing Theory 120
- 1 Linear Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
- 2 Single-Factor, Residual-Risk-Free Models . . . . . . . . . . . . . . . . . 120
- 3 Multifactor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
- 4 Interpretation of the Factor Risk Premiums . . . . . . . . . . . . . . . . . 122
- 5 Factor Models with “Unavoidable” Risk . . . . . . . . . . . . . . . . . . 122
- 6 Asymptotic Arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
- 7 Arbitrage Pricing of Assets with Idiosyncratic Risk . . . . . . . . . . . . . 125
- 8 Risk and Risk Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
- 9 Fully Diversified Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 128
- 10 Interpretation of the Factor Premiums . . . . . . . . . . . . . . . . . . . . 130
- 11 Pricing Bounds in A Finite Economy . . . . . . . . . . . . . . . . . . . . 133
- 12 Exact Pricing in the Linear Model . . . . . . . . . . . . . . . . . . . . . . 134
8 Equilibrium Models with Complete Markets 136
- 1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
- 2 Valuation in Complete Markets . . . . . . . . . . . . . . . . . . . . . . . 137
- 3 Portfolio Separation in Complete Markets . . . . . . . . . . . . . . . . . . 137
- 4 The Investor’s Portfolio Problem . . . . . . . . . . . . . . . . . . . . . . 138
- 5 Pareto Optimality of Complete Markets . . . . . . . . . . . . . . . . . . . 139
- 6 Complete and Incomplete Markets: A Comparison . . . . . . . . . . . . . 140
- 7 Pareto Optimality in Incomplete Markets: Effectively Complete Markets . 140
- 8 Portfolio Separation and Effective Completeness . . . . . . . . . . . . . . 141
- 9 Efficient Set Convexity with Complete Markets . . . . . . . . . . . . . . . 143
- 10 Creating and Pricing State Securities with Options . . . . . . . . . . . . . 144
9 General Equilibrium Considerations in Asset Pricing 147
- 1 Returns Distributions and Financial Contracts . . . . . . . . . . . . . . . . 147
- 2 Systematic and Nonsystematic Risk . . . . . . . . . . . . . . . . . . . . . 153
- 3 Market Efficiency with Nonspeculative Assets . . . . . . . . . . . . . . . 154
- 4 Price Effects of Divergent Opinions . . . . . . . . . . . . . . . . . . . . . 158
CONTENTS ix
- 5 Utility Aggregation and the “Representative” Investor . . . . . . . . . . . 161
10 Intertemporal Models in Finance 163
- 1 Present Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
- 2 State Description of a Multiperiod Economy . . . . . . . . . . . . . . . . 163
- 3 The Intertemporal Consumption Investment Problem . . . . . . . . . . . . 166
- 4 Completion of the Market Through Dynamic Trading . . . . . . . . . . . 168
- 5 Intertemporally Efficient Markets . . . . . . . . . . . . . . . . . . . . . . 170
- 6 Infinite Horizon Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11 Discrete-time Intertemporal Portfolio Selection 175
- 1 Some Technical Considerations . . . . . . . . . . . . . . . . . . . . . . . 187
A Consumption Portfolio Problem when Utility Is Not Additively Separable 188
B Myopic and Turnpike Portfolio Policies 193
- 1 Growth Optimal Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 193
- 2 A Caveat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
- 3 Myopic Portfolio Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 195
- 4 Turnpike Portfolio Policies . . . . . . . . . . . . . . . . . . . . . . . . . 195
12 An Introduction to the Distributions of Continuous-Time Finance 196
- 1 Compact Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
- 2 Combinations of Compact Random Variables . . . . . . . . . . . . . . . . 198
- 3 Implications for Portfolio Selection . . . . . . . . . . . . . . . . . . . . . 198
- 4 “Infinitely Divisible” Distributions . . . . . . . . . . . . . . . . . . . . . 200
- 5 Wiener and Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . 202
- 6 Discrete-Time Approximations for Wiener Processes . . . . . . . . . . . . 204
13 Continuous-Time Portfolio Selection 206
- 1 Solving a Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 208
- 2 Testing The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
- 3 Efficiency Tests Using the Continuous-Time CAPM . . . . . . . . . . . . 213
- 4 Extending The Model to Stochastic Opportunity Sets . . . . . . . . . . . . 213
- 5 Interpreting The Portfolio Holdings . . . . . . . . . . . . . . . . . . . . . 215
- 6 Equilibrium in the Extended Model . . . . . . . . . . . . . . . . . . . . . 218
- 7 Continuous-Time Models with No Riskless Asset . . . . . . . . . . . . . . 219
- 8 State-Dependent Utility of Consumption . . . . . . . . . . . . . . . . . . 220
- 9 Solving A Specific Problem . . . . . . . . . . . . . . . . . . . . . . . . . 221
- 10A Nominal Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
14 The Pricing of Options 227
- 1 Distribution and Preference-Free Restrictions on Option Prices . . . . . . . 227
- 2 Option Pricing: The Riskless Hedge . . . . . . . . . . . . . . . . . . . . . 235
- 3 Option Pricing by The Black-Scholes Methodology . . . . . . . . . . . . 237
- 4 A Brief Digression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
- 5 The Continuous-Time Riskless Hedge . . . . . . . . . . . . . . . . . . . . 239
- 6 The Option’s Price Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 241
x CONTENTS
- 7 The Hedging Portfolio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
- 8 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
- 9 The Black-Scholes Put Pricing Formula . . . . . . . . . . . . . . . . . . . 244
- 10The Black-Scholes Model as the Limit of the Binomial Model . . . . . . . 246
- 11Preference-Free Pricing: The Cox-Ross-Merton Technique . . . . . . . . . 247
- 12More on General Distribution-Free Properties of Options . . . . . . . . . . 248
15 Review of Multiperiod Models 252
- 1 The Martingale Pricing Process for a Complete Market . . . . . . . . . . . 252
- 2 The Martingale Process for the Continuous-Time CAPM . . . . . . . . . . 253
- 3 A Consumption-Based Asset-Pricing Model . . . . . . . . . . . . . . . . 254
- 4 The Martingale Measure When The Opportunity Set Is Stochastic . . . . . 256
- 5 A Comparison of the Continuous-Time and Complete Market Models . . . 257
- 6 Further Comparisons Between the Continuous-Time and Complete Market
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
- 7 More on the Consumption-Based Asset-Pricing Model . . . . . . . . . . . 261
- 8 Models With State-Dependent Utility of Consumption . . . . . . . . . . . 263
- 9 Discrete-Time Utility-Based Option Models . . . . . . . . . . . . . . . . 263
- 10Returns Distributions in the Intertemporal Asset Model . . . . . . . . . . . 265
16 An Introduction to Stochastic Calculus 267
- 1 Diffusion Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
- 2 Itˆo’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
- 3 Properties of Wiener Processes . . . . . . . . . . . . . . . . . . . . . . . 268
- 4 Derivation of Itˆo’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 268
- 5 Multidimensional Itˆo’s Lemma . . . . . . . . . . . . . . . . . . . . . . . 269
- 6 Forward and Backward Equations of Motion . . . . . . . . . . . . . . . . 269
- 7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
- 8 First Passage Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
- 9 Maximum and Minimum of Diffusion Processes . . . . . . . . . . . . . . 273
- 10Diffusion Processes as Subordinated Wiener Processes . . . . . . . . . . . 273
- 11Extreme Variation of Diffusion Processes . . . . . . . . . . . . . . . . . . 274
- 12Statistical Estimation of Diffusion Processes . . . . . . . . . . . . . . . . 275
17 Advanced Topics in Option Pricing 279
- 1 An Alternative Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 279
- 2 A Reexamination of The Hedging Derivation . . . . . . . . . . . . . . . . 280
- 3 The Option Equation: A Probabilistic Interpretation . . . . . . . . . . . . 281
- 4 Options With Arbitrary Payoffs . . . . . . . . . . . . . . . . . . . . . . . 282
- 5 Option Pricing With Dividends . . . . . . . . . . . . . . . . . . . . . . . 282
- 6 Options with Payoffs at Random Times . . . . . . . . . . . . . . . . . . . 285
- 7 Option Pricing Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 287
- 8 Perpetual Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
- 9 Options with Optimal Early Exercise . . . . . . . . . . . . . . . . . . . . 289
- 10Options with Path-Dependent Values . . . . . . . . . . . . . . . . . . . . 291
- 11Option Claims on More Than One Asset . . . . . . . . . . . . . . . . . . 294
- 12Option Claims on Nonprice Variables . . . . . . . . . . . . . . . . . . . . 295
- 13Permitted Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . 297
CONTENTS xi
- 14Arbitrage “Doubling” Strategies in Continuous Time . . . . . . . . . . . . 298
18 The Term Structure of Interest Rates 300
- 1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
- 2 The Term Structure in a Certain Economy . . . . . . . . . . . . . . . . . 301
- 3 The Expectations Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 302
- 4 A Simple Model of the Yield Curve . . . . . . . . . . . . . . . . . . . . . 304
- 5 Term Structure Notation in Continuous Time . . . . . . . . . . . . . . . . 305
- 6 Term Structure Modeling in Continuous Time . . . . . . . . . . . . . . . 306
- 7 Some Simple Continuous-Time Models . . . . . . . . . . . . . . . . . . . 307
- 8 Permissible Equilibrium Specifications . . . . . . . . . . . . . . . . . . . 309
- 9 Liquidity Preference and Preferred Habitats . . . . . . . . . . . . . . . . . 311
- 10Determinants of the Interest Rate . . . . . . . . . . . . . . . . . . . . . . 314
- 11Bond Pricing with Multiple State Variables . . . . . . . . . . . . . . . . . 315
19 Pricing the Capital Structure of the Firm 318
- 1 The Modigliani-Miller Irrelevancy Theorem . . . . . . . . . . . . . . . . 318
- 2 Failure of the M-M Theorem . . . . . . . . . . . . . . . . . . . . . . . . 320
- 3 Pricing the Capital Structure: An Introduction . . . . . . . . . . . . . . . 321
- 4 Warrants and Rights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
- 5 Risky Discount Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
- 6 The Risk Structure of Interest Rates . . . . . . . . . . . . . . . . . . . . . 326
- 7 The Weighted Average Cost of Capital . . . . . . . . . . . . . . . . . . . 329
- 8 Subordinated Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
- 9 Subordination and Absolute Priority . . . . . . . . . . . . . . . . . . . . 331
- 10Secured Debt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
- 11Convertible Securities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
- 12Callable Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
- 13Optimal Sequential Exercise: Externalities and Monopoly Power . . . . . 337
- 14Optimal Sequential Exercise: Competitive and Block Strategies . . . . . . 340
- 15Sequential and Block Exercise: An Example . . . . . . . . . . . . . . . . 343
- 16Pricing Corporate Securities with Interest Rate Risk . . . . . . . . . . . . 345
- 17Contingent Contracting .
ت شرح کامل و توضیح دقیق در مورد فایلی که به فروش میرسد بصورتیکه خریدار هرآنچه لازم هست در مورد فایلی جهت دانلود خریداری می کند بداند ذکر بفرمائید درصورتیکه فایل دارای تعداد صفحه یا تعداد اسلاید می باشد ذکر بفرمائید اگر قابل ویرایش است یا خیر ذکر بفرمائید. درج فهرست مطالب به خریدار کمک می کند انتخاب بهتری داشته باشد.
دانلود کتاب لاتین با عنوان تئوری تصمیم گیری مالی ( ویژه رشته های مدیریت مالی، اقتصاد و حسابداری)