حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد تحلیل مساله کوتاهترین مسیر در گراف جهت دار

اختصاصی از حامی فایل مقاله در مورد تحلیل مساله کوتاهترین مسیر در گراف جهت دار دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد تحلیل مساله کوتاهترین مسیر در گراف جهت دار


مقاله در مورد تحلیل مساله کوتاهترین مسیر در گراف جهت دار

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه11

 

 

تحلیل مساله کوتاهترین مسیر در گراف جهت دار

 

اگر  یک گراف جهت دار باشد فرض کنید هر لبه  با وزن  مشخص می گردد و هزینه رفتن مستقیم از گره i به j را مشخص میسازد بزودی الگوریتم دایجسترا را که برای یافتن کوتاهترین مسیر در گراف با وزن های مثبت کاربرد دارد را بیان میکنیم . در این بخش و بخش بعدی دو مساله مرتبط با گراف را بیان خواهیم کرد .

1 ) گراف G را در نظر بگیرید ( وزن دار ) اگر این گراف دارای سیکل منفی باشد آنگاه یک سیکل جهت دار c مثل :

 

2) اگر گراف شامل هیچ دوره ( سیکل‌)‌ منفی نباشد یافتن مسیری به نام p از گره آغازی s و گره پایانی t با کمترین هزینه :  باید کمترین باشد به ازای هر مسیر از s به t . این مساله به هر دو نام مسیر با کمترین هزینه و کوتاهترین مسیر نامیده می شود .

طراحی و آنالیز الگوریتم :

اکنون با شروع تعریف مجدد الگوریتم دایجسترا که برای یافتن کوتاهترین مسیر در گراف هایی که وزن منفی ندارند شروع میکنیم .

 

در این گراف یک مسیر از s به t با ملاقات چندین دفعه دوره ( سیکل ) C بدست می آید .

کوتاهترین مسیر با شروع از گره آغازین s به هر نود v در یک گراف اصولا یک الگوریتم حریصانه است . ایده اصلی از یک مجموعه S تشکیل شده است که کوتاهترین مسیر از هر نود s به هر نود داخل مجموعه S شناخته شده است . در این شکل این الگوریتم را نشان می دهیم با  شروع میکنیم . ما میدانیم کوتاهترین مسیر از s به s دارای هزینه صفر است زمانیکه هیچ لبه با وزن منفی نداشته باشیم . سپس این عنصر را به طور حریصانه به مجموعه اضافه میکنیم . در طی مرحله اول الگوریتم حریصانه ما کمترین هزینه لبه های گره s را تشکیل خواهیم داد . بعبارت دیگر یعنی :  . یک نکته مهم با توجه به الگوریتم دایجسترا این است که کوتاهتری مسیر از s به v با یک یال  نمایش داده می شود بنابراین بلافاصله نود v را به مجموعه S اضافه میکنیم . پس مسیر  مسلما کوتاهترین مسیر به v است اگر هیچ یالی با هزینه منفی نداشته باشیم . مسیر های دیگر از s به v باید از یک یال خارج شده از s که حداقل هزینه بیشتری نسبت به لبه (s,v) داشته باشند شروع میشوند .

این ایده همواره صحیح نیست بویژه زمانی که دارای لبه های با وزن منفی هستیم .

 

 

 

 

 

 

 

 

 

یک ایده برنامه نویسی پویا :

یک روش برنامه نویسی پویا سعی بر حل این مساله برای یافتن کوتاهترین مسیر از s به t زمانیکه لبه با وزن منفی داشته باشیم اما سیکل ( دوره ) با طول منفی نداشته باشیم . زر مساله i می تواند کوتاهترین مسیر را تنها بوسیله استفاده از i گره اولیه پیدا کند . این ایده بلافاصله جواب نمی دهد بلکه با اعمال اندکی تغییرات جواب دلخواه را به ما میدهد . الگوریتم Bellman-Ford algorithm این الگوریتم را بوسیله برنامه نویسی پویا مطرح کرده و حل کرده اند .

 

 

 

 

 


دانلود با لینک مستقیم


مقاله در مورد تحلیل مساله کوتاهترین مسیر در گراف جهت دار
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد