حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

شبیه سازی برهمکنش نانولوله کربنی (Carban Nanotube) با فلورین (C60) به کمک نرم افزار لمپس (LAMMPS)

اختصاصی از حامی فایل شبیه سازی برهمکنش نانولوله کربنی (Carban Nanotube) با فلورین (C60) به کمک نرم افزار لمپس (LAMMPS) دانلود با لینک مستقیم و پر سرعت .

شبیه سازی برهمکنش نانولوله کربنی (Carban Nanotube) با فلورین (C60) به کمک نرم افزار لمپس (LAMMPS)


شبیه سازی برهمکنش نانولوله کربنی (Carban Nanotube) با فلورین (C60) به کمک نرم افزار لمپس (LAMMPS)

در این شبیه سازی که با استفاده از نرم افزار لمپس (LAMMPS) انجام شده یک فلورین (C60) در داخل یک نانولوله کربنی (Carbon Nanotube) قرار گرفته و با آن برهمکنش می کند.  فلورین در داخل نانولوله دایما در حال نوسان است. فلورین می خواهد از نانولوله خارج شود ولی نانولوله اجازه نمی دهد. در واقع یک سد انرژی در دهانه نانولوله باعث می شود فلورین در داخل نانولوله باقی می ماند. شبیه سازی در محیط لینوکس ubuntu انجام گرفته است. نانولوله و فلورین با پتانسیل ترسوف (Tersoff) مدل شده اند و برای هم کنش بین این دو مولکول از پتانسیل لنارد-جونز (LJ) کمک گرفته ایم. مدت آموزش ۳۰ دقیقه با کیفیت HD و فرمت mp4 می باشد. تاریخ انتشار 95/1/26


دانلود با لینک مستقیم


شبیه سازی برهمکنش نانولوله کربنی (Carban Nanotube) با فلورین (C60) به کمک نرم افزار لمپس (LAMMPS)

پایان نامه ارشد مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از حامی فایل پایان نامه ارشد مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


پایان نامه ارشد مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

 

فرمت : Word

تعداد صفحلت : 209

 

چکیده

 

از آنجائیکه شرکت های بزرگ در رشته نانو فناوری  مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و  محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند  بیشتر توسعه یافته اند.

پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.

در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه  مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:

  1. مدل انرژی- معادل
  2. مدل اجزاء محدود بوسیله نرم افزار ANSYS
  3. مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB

مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ  در جهت های محوری و محیطی بدست آمده است.

در  مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی،  نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.

در  مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.

اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه  مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی  تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله  افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.

نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.


دانلود با لینک مستقیم


پایان نامه ارشد مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

بررسی نانو لوله های کربنی و خواص انرژی آن ها

اختصاصی از حامی فایل بررسی نانو لوله های کربنی و خواص انرژی آن ها دانلود با لینک مستقیم و پر سرعت .

نانو فناوری عبارت ازآفرینش مواد، قطعات و سیستم های مفید با کنترل آنها در مقیاس طولی نانو متر و بهره برداری از خصوصیات و پدیده های جدید حاصله در آن مقیاس می باشد. به عبارت دیگر فناوری نانو، ایجاد چیدمانی دلخواه از اتم ها و مولکول ها و تولید مواد جدید با خواص مطلوب است. فناوری نانو، نقطه تلاقی اصول مهندسی، فیزیک، زیست شناسی، پزشکی و شیمی است و به عنوان ابزاری برای کاربرد این علوم و غنی سازی آنها در جهت ساخت عناصر کاملاً جدید عمل می کند.

 

فهرست مطالب

 

فصل اول:نانوتکنولوژی

1-1 مقدمه. 2

1-1-1 فناوری نانو. 2

1-2 معرفی نانولوله‌های کربنی.. 3

1-2-1 ساختار نانو لوله‌های کربنی.. 3

1-2-2 کشف نانولوله. 5

1-3 تاریخچه. 9

 

فصل دوم:خواص نانولوله های کربنی

2-1 مقدمه. 15

2-2 انواع نانولوله‌های کربنی.. 17

2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT) 17

2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT) 21

2-3 مشخصات ساختاری نانو لوله های کربنی.. 23

2-3-1 ساختار یک نانو لوله تک دیواره 23

2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 27

2-4 خواص نانو لوله های کربنی.. 28

2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 32

2-4-1-1 مدول الاستیسیته. 33

2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک... 38

 

فصل سوم:روش های سنتز نانولوله های کربنی

3-1 فرایندهای تولید نانولوله های کربنی.. 46

3-1-1 تخلیه از قوس الکتریکی.. 46

3-1-2 تبخیر/ سایش لیزری.. 49

3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD) 50

3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 53

3-1-5 رشد فاز بخار. 54

3-1-6 الکترولیز. 54

3-1-7 سنتز شعله. 55

3-1-8 خالص سازی نانولوله های کربنی.. 55

3-2 تجهیزات.. 57

3-2-1 میکروسکوپ های الکترونی.. 58

3-2-2 میکروسکوپ الکترونی عبوری (TEM) 60

3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM) 61

3-2-4 میکروسکوپ های پروب پیمایشگر (SPM) 63

3-2-4-1 میکروسکوپ های نیروی اتمی (AFM) 64

3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM) 65

 

فصل چهارم:کابردهای نانولوله کربنی در تولید انرژی

4-1 کاربردهای نانو فناوری.. 68

4-2 کاربردهای نانولوله‌های کربنی.. 69

4-2-1 کاربرد در ساختار مواد. 70

4-2-2 کاربردهای الکتریکی و مغناطیسی.. 73

4-2-3 کاربردهای شیمیایی.. 77

4-2-5 کاربرد به عنوان ریسمان (فیبر) و ورق. 85

4-2-6 تولید ابرخازن‌های رشته‌ای با استفاده از نانولوله کربنی.. 86

4-3 استفاده از نانولوله‌های کربنی در پیل‌های خورشیدی.. 87

4-3-1 رسوب الکتریکی نانولوله‌های کربنی تک‌دیواره روی الکترود شیشه‌ای رسانا 90

4-3-2 جداسازی بارهای القاء شدة فوتونی در فیلم نانولوله‌های تک‌دیواره 92

4-3-3 سلول‌های خورشیدی فوتوالکتروشیمیایی.. 93

4-3-4 هیبریدهای نانولوله‌ تک‌دیواره- نیمه‌هادی.. 94

4-3-5   ساختار نانولولة تک‌دیواره- پورفیرین.. 96

 

نتیجه گیری.. 98

 

منابع. 99

 


دانلود با لینک مستقیم


بررسی نانو لوله های کربنی و خواص انرژی آن ها

پایان نامه منحنی مشخصه ولتاژ جریان نانو لوله های کربنی و گالیم نیترید - در قالب ورد 80 صفحه

اختصاصی از حامی فایل پایان نامه منحنی مشخصه ولتاژ جریان نانو لوله های کربنی و گالیم نیترید - در قالب ورد 80 صفحه دانلود با لینک مستقیم و پر سرعت .

پس از کشف نانولوله­های کربنی توسط ایجیما و همکارانش بررسی­های بسیار زیادی بر روی این ساختارها در سایر علوم انجام شده است. این ساختارها به دلیل خواص منحصر به فرد مکانیکی و الکتریکی که از خود نشان داده­اند جایگزین مناسبی برای سیلیکون و ترکیبات آن در قطعات الکترونیکی خواهند شد. در اینجا به بررسی خواص الکتریکی نانولوله­های کربنی زیگزاگ و نانولوله های گالیم نیترید که به عنوان یک کانال بین چشمه و دررو قرار داده شده پرداختیم و نحوه­ی توزیع جریان در ترانزیستور­های اثر میدانی  را در شرایط دمایی و میدان­های مختلف بررسی کرده ایم. از آنجایی که سرعت خاموش و روشن شدن ترانزیستور برای ما در قطعات الکترونیکی و پردازنده­های کامپوتری از اهمیت ویژه­ای برخوردار است،  انتخاب نانولوله­ای که تحرک پذیری بالایی داشته باشد بسیار مهم است. نتایج بررسی­ها نشان می­دهد تحرک پذیری الکترون در نانولوله­­های کربنی و گالیم نیترید متفاوت به ازای  میدان­های مختلفی که در طول نانولوله­ها اعمال شود، مقدار بیشینه­ای را خواهد گرفت. بنا بر این در طراحی ترانزیستورها با توجه به مشخصه­های هندسی ترانزیستور و اختلاف پتانسیلی که بین چشمه و دررو آن اعمال  می­شود باید  نانولوله­ای را انتخاب کرد که تحرک پذیری مناسبی  داشته باشد.


دانلود با لینک مستقیم


پایان نامه منحنی مشخصه ولتاژ جریان نانو لوله های کربنی و گالیم نیترید - در قالب ورد 80 صفحه

پایان نامه اعمال پوشش نانوکامپوزیتی کرم-کاربید تنگستن بر روی فولاد کربنی و بررسی خواص سایشی آن

اختصاصی از حامی فایل پایان نامه اعمال پوشش نانوکامپوزیتی کرم-کاربید تنگستن بر روی فولاد کربنی و بررسی خواص سایشی آن دانلود با لینک مستقیم و پر سرعت .

پایان نامه اعمال پوشش نانوکامپوزیتی کرم-کاربید تنگستن بر روی فولاد کربنی و بررسی خواص سایشی آن


پایان نامه اعمال پوشش نانوکامپوزیتی کرم-کاربید تنگستن بر روی فولاد کربنی و بررسی خواص سایشی آن

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:112

پایان نامه برای دریافت درجه کارشناسی ارشد “M.Sc”
مهندسی مواد-شناسایی و انتخاب مواد مهندسی

فهرست مطالب:
  عنوان                                                                                                                              صفحه  
چکیده     1
 مقدمه    2
فصل اول : کلیات
کلیات
    3
4
فصل دوم : مروری بر منابع    5
2-1- مقدمه     6
2-2- آبکاری الکتریکی     6
          2-2-1- مزایا و معایب آبکاری الکتریکی     7
2-3- آبکاری پوششهای کامپوزیتی     8
          2-3-1- مزایا و معایب آبکاری کامپوزیتی    9
2-4- پوشش های نانوکامپوزیتی     10
          2-4-1- روش تولید پوششهای نانوکامپوزیتی     10
          2-4-2- کاربرد پوششهای  نانوکامپوزیتی     11
2-5- مکانیزم رسوب الکتریکی     12
          2-5-1- رسوبگذاری کرم سه ظرفیتی     13
          2-5-2- کمپلکس سازهای کرم     14
2-6- آبکاری کرم سه ظرفیتی     15
          2-6-1- ترکیب حمام کرم سه ظرفیتی     15
          2-6-2- ویژگی های ترکیب حمام آبکاری     16
          2-6-3- مشکلات آبکاری کرم سه ظرفیتی     16
2-7- مکانیزمهای همرسوبی الکتروشیمیایی     17
          2-7-1- مدل کلاسیک گاگلیمی     18
          2-7-2- مدل Celies     21
2- 8- پایداری پراکندگی سیستمهای کلوئیدی     22
          2-8-1- توزیع فیزیکی نانو ذرات با عملیات اولتراسونیک     23
          2-8-2- روش های شیمیایی پراکندگی سیستمهای کلوئیدی     23
2-9- تاثیر نوع جریان آبکاری     27
2-10- تاثیر زمان روشنایی و خاموشی     28
2-11- تاثیر دانسیته جریان     29
2-12- روش های تعیین ذرات پراکنده در پوشش     33
          2-12-1- روش وزنی     33
          2-12-2- روش میکروسکوپی    33
          2-12-3- روش میکروآنالیزورهای پروپ الکترونی    33
          2-12-4- روش طیف نگاری مرتبط با فوتون (PCS)    34
2-13- سایش و مکانیزمهای آن
    34
فصل سوم : روش انجام آزمایش    37
3-1- مواد مورد استفاده     38
3-2- وسایل و تجهیزات مورد استفاده جهت آبکاری     39
          3-2-1- منبع جریان     40
3-3- آماده سازی الکترولیت و آبکاری نمونه ها     41
3-4- ارزیابی نمونه ها     44
3-5- نحوه بررسی اثر پارامترهای انتخاب شده بر ریز ساختار و خواص پوشش     45
          3-5-1- بررسی اثر غلظت پخش کننده (SDS)     45
          3-5-2- بررسی اثر افزودنی ساخارین     46
          3-5-3- بررسی اثر دانسیته جریان     46
          3-5-4- بررسی اثر فرکانس     47
          3-5-5- بررسی اثر چرخه کاری     47
          3-5-6- بررسی اثر غلظت کاربیدتنگستن     48
فصل چهارم : نتایج و بحث    49
4-1- بررسی اثر افزودنیها بر مورفولوژی پوششهای نانوکامپوزیتیCr-WC     50
         4-1-1- تاثیر سورفکتانت SDS     51
         4-1-2- تاثیر افزودنی ساخارین     56
         4-1-3- تاثیر غلظت ذرات کاربید تنگستن در محلول     59
4-2- بررسی اثر پارامترهای آبکاری پالسی بر مورفولوژی پوششهای نانوکامپوزیتی Cr-WC    61
         4-2-1- تاثیر دانسیته جریان     61
         4-2-2- تاثیر چرخه کاری     65
         4-2-3- تاثیر فرکانس پالس     67
4-3- بررسی اثر پارامترهای موثر بر سختی و رفتار سایشی پوششهای نانوکامپوزیتی Cr-WC     70
        4-3-1- تاثیر غلظت ذرات WC در حمام آبکاری    70
        4-3-2- تاثیر غلظت سورفکتانت SDS     73
        4-3-3- تاثیر افزودن ساخارین     75
        4-3-4- تاثیر دانسیته جریان     78
        4-3-5- تاثیر فرکانس پالس     81
        4-3-6- تاثیر چرخه کاری
    83
فصل پنجم : نتیجه گیری و پیشنهادها    85
نتیجه گیری     86
پیشنهادها    87
مراجع     88
مراجع فارسی    89
مراجع لاتین    90
چکیده انگلیسی    94

فهرست جدول ها
  عنوان                                                                                                                                                     صفحه
جدول 2-1- درصد حجمی ذراتی که توسط جذب ضعیف و قوی در حین ایجاد پوشش
 کامپوزیتی نیکل-کاربیدسیلسیم به سطح کاتد چسبیده اند    20
جدول 2-2- شرایط پایداری بر حسب پتانسیل زتا    24
جدول 2-3- شرایط گوناگون شفافیت محلول بر حسب پتانسیل غلظت ترساز    26
جدول 3-1- ترکیب و شرایط حمام مورد استفاده برای آبکاری    42
جدول 3-2- ترکیب حمام الکتروپولیش     43
جدول 3-3- شرایط انجام آزمایش سایش     45
جدول 3-4- شرایط آبکاری بکار رفته برای بررسی اثر غلظت SDS     46
جدول 3-5- شرایط آبکاری بکار رفته برای بررسی اثر غلظت ساخارین     46
جدول 3-6- شرایط آبکاری بکار رفته برای بررسی اثر دانسیته جریان     46
جدول 3-7- زمان های روشنی و خاموشی در هر فرکانس     47
جدول 3-8- شرایط آبکاری بکار رفته برای بررسی اثر فرکانس     47
جدول 3-9- شرایط آبکاری بکار رفته برای بررسی اثر چرخه کاری     48
جدول 3-10- شرایط آبکاری بکار رفته برای بررسی اثر غلظت کاربیدتنگستن     48



فهرست شکل ها
 عنوان                                                                                                                                                      صفحه

شکل 2-1- شماتیکی از سلول آبکاری الکتریکی.
    7
شکل 2-2- گروههای مختلف مواد نانوساختار و روشهای مختلف تولید آنها.
    11
شکل 2-3- نمودار شماتیک انواع رشد.
    13
شکل 2-4- مدل پنج مرحله ای Celis.
    22
شکل 2-5- تصویر شماتیک از یک فعال ساز.
    25
شکل 2-6- پوششهای نانو نیکل با اعمال دانسیته جریان های مختلف.
    30
شکل 2-7- ارتباط دانسیته جریان پوشش دهی و اندازه دانه پوششهای نیکل نانو.
    31
شکل 2-8- الگوی پراش تفرق اشعه X پوشش نانو نیکل در دانسیته جریان های مختلف.
    32
شکل 3-1- تصویری شماتیک از جریان پالس مربعی و مثلثی.
    40
شکل 4-1- تصاویر SEM مورفولوژی سطح پوشش کرم خالص از حمام فاقد افزودنی (5/2=pH، دانسیته جریان 8، چرخه کاری %50، فرکانس Hz 10، دما  27 و زمان min 100).
    50
شکل 4-2- تصاویر SEM مورفولوژی سطح پوشش کامپوزیتی Cr-WC از حمام فاقد افزودنی (5/2pH=، غلظت ذرات g/lit 10، دانسیته جریان  8، چرخه کاری%50، فرکانس Hz 10 ، دما 27 و زمان min 100).
    51
شکل 4-3- نحوه عملکرد فعال ساز سطح بر روی جدایش ذرات در حمام.
    52
 شکل 4-4- تصاویر SEM مورفولوژی سطح پوششهای کامپوزیتی از حمام با g/lit 1 ساخارین و حاوی             a) صفر، b) 5/.، c) 1، d) 2 گرم بر لیتر SDS (5/2pH=، غلظت ذرات g/lit 10، چرخه کاری %50،         فرکانس Hz 10 ، دانسیته جریان  8، دما 27 و زمان min 100).
    53
شکل 4-5- تاثیر غلظت SDS بر درصد وزنی ذرات کاربیدتنگستن در پوشش Cr-WC (5/2PH=، غلظت ذرات g/lit 10، g/lit 1 ساخارین، چرخه کاری %50، فرکانس Hz 10، دانسیته جریان  8، دما 27 و      زمان min 100).
    55
شکل 4-6- تصاویر SEM مورفولوژی سطح پوشش نانوکامپوزیتی Cr-WC از حمام حاوی 1 گرم بر لیتر SDS و a) 5/0،  (b1،  (c5/1،  (d3 گرم بر لیتر ساخارین (5/2pH=، غلظت ذرات g/lit 10، چرخه کاری ‌%50، فرکانس Hz 10، دانسیته جریان 8، دما 27 و زمان min 100).
    57
شکل 4-7- تاثیر غلظت ساخارین بر درصد وزنی ذرات کاربیدتنگستن در پوششهای Cr-WC (5/2pH=، غلظت ذرات g/lit 10، g/lit SDS 1، چرخه کاری %50، فرکانس Hz 10، دانسیته جریان 8، دما 27 و    زمان min100).
    58
شکل 4-8- تصاویر SEM مورفولوژی سطح پوششهای کامپوزیتی Cr-WC از حمام با g/lit SDS 1،          g/lit1 ساخارین،  (a5،  (b10، c) 20، (d 40 گرم بر لیتر کاربیدتنگستن (5/2pH=، چرخه کاری%50، فرکانس Hz 10، دانسیته جریان 8، دما 27 و زمان min 100).
    59
شکل 4-9- تصاویر SEM سطح مقطع پوششهای کامپوزیتی Cr-WC از حمام با g/lit SDS 1، g/lit 1 ساخارین،  (a5،  (b10، (c 20، (d 40 گرم بر لیتر کاربیدتنگستن (5/2pH=، چرخه کاری%50، فرکانس Hz 10، دانسیته جریان 8، دما 27 و زمان min 100).
    60
شکل 4-10- تاثیر غلظت کاربیدتنگستن بردرصد وزنی ذرات در پوششهای Cr-WC (5/2pH=، g/lit SDS 1، g/lit 1 ساخارین، چرخه کاری %50، فرکانس Hz 10 ، دانسیته جریان 8، دما 27 و زمان min 100).
    61
شکل 4-11- تصاویر SEM مورفولوژی سطح پوششهای کامپوزیتی Cr-WC از حمام با g/lit SDS 1 و         g/lit 1 ساخارین با دانسیته جریانهای (a 2،  (b8،  (c15 و d) 20 آمپر بر دسیمتر مربع (5/2pH= ،        چرخه کاری %50، فرکانس Hz 10، دما 27 و زمان min 100).
    62
شکل 4-12- تاثیر دانسیته جریان بر درصد وزنی ذرات کاربید تنگستن در پوششهای Cr-WC (5/2pH=، غلظت ذرات g/lit 10، g/lit SDS 1، g/lit 1 ساخارین، چرخه کاری %50، فرکانس Hz 10 ، دما 27 و              زمان min 100).    63
شکل 4-13- تصاویر SEM ازمورفورلوژی سطح پوششهای نانوکامپوزیتی Cr-WC از حمام حاوی
 g/lit SDS 1، g/lit 1 ساخارین، درچرخه های کاری a) 30، b) 50، c) 70، d) 90 درصد (5/2pH=،       غلظت ذرات g/lit، 10، فرکانس Hz 10، دانسیته جریان 8، دما 27 و زمان min 100).
    65
شکل 4-14- تاثیر چرخه کاری بر درصد وزنی ذرات کاربیدتنگستن در پوششهای Cr-WC (5/2pH=، غلظت ذرات g/lit 10، g/lit SDS 1، g/lit 1 ساخارین، فرکانس Hz 10، دانسیته جریان 8، دما 27 و     زمان min 100).
    66
شکل 4-15- تصاویر SEM مورفولوژی سطح پوششهای کامپوزیتی Cr-WC از حمام حاویg/lit SDS  1 وg/lit 1 ساخارین (a 1، (b 10 (c 100،  (d1000 هرتز (5/2pH=، غلظت ذرات g/lit 10، چرخه کاری %50، دانسیته جریان 8، دما 27 و زمان min 100).
    68
شکل 4-16- نمودار تغییرات درصد وزنی کاربیدتنگستن در پوششهای کامپوزیتی Cr-WC برحسب فرکانس، در حمام آبکاری با غلظت ذرات g/lit 10، g/lit SDS 1، g/lit 1 ساخارین، 5/2pH=، چرخه کاری %50، دانسیته جریان 8، دما 27 و زمان min 100.
    69
شکل 4-17- نمودار ریز سختی پوشش کرم خالص و پوشش کامپوزیتی Cr-WC برحسب غلظتهای مختلف WC در حمام آبکاری با دانسیته جریان  8، چرخه کاری %50، فرکانس Hz 10، SDS و ساخارین هر      کدام g/lit 1.
    70
شکل 4-18- نرخ سایش پوشش کرم خالص و پوشش کامپوزیتی Cr-WC بر حسب غلظتهای مختلف WC در حمام آبکاری با دانسیته جریان  8، چرخه کاری %50، فرکانس Hz 10، SDS و ساخارین هر          کدام g/lit 1.
    71
شکل 4-19- تصاویر SEM سطوح سایش پوششهای کامپوزیتی Cr-WC تولید شده در حمامهای حاوی غلظتهای a) 5، b) 10 و c) 40 گرم بر لیتر ذرات WC در آبکاری با دانسیته جریان  8، چرخه کاری %50، فرکانس Hz10SDS , و ساخارین هر کدام g/lit 1.
    72
شکل 4-20- نمودار ریز سختی پوشش کامپوزیتی Cr-WC بر حسب افزایش غلظت SDS در حمام آبکاری با دانسیته جریان  8، غلظت ذرات gr/lit10، چرخه کاری %50، فرکانس Hz 10، SDS وساخارین هر    کدام g/lit 1.    73
شکل 4-21- نرخ سایش پوششهای کامپوزیتی Cr-WC بر حسب غلظت SDS در حمام آبکاری با دانسیته جریان  8، غلظت ذرات g/lit10، چرخه کاری %50، فرکانس Hz 10 و ساخارین g/lit 1.

    74
شکل 4-22- ریزسختی پوششهای کامپوزیتی Cr-WC بر حسب افزایش غلظت ساخارین در حمام آبکاری با دانسیته جریان  8، غلظت ذرات g/lit 10، چرخه کاری %50، فرکانس Hz 10 و SDS g/lit 1.
    75
شکل 4-23- نرخ سایش پوششهای کامپوزیتی Cr-WC بر حسب غلظت ساخارین در حمام آبکاری با دانسیته جریان  8، غلظت ذراتgr/lit 10، چرخه کاری %50، فرکانس Hz 10 و SDS g/lit 1.
    76
شکل 4-24- تصاویر SEM از سطوح سایش پوششهای کامپوزیتی Cr-WC در حمام با غلظتهای a) 5/0،
 b) 1 و c) 3 گرم بر لیتر ساخارین با دانسیته جریان  8، چرخه کاری %50، فرکانس Hz10 و        SDS g/lit 1.
    78
شکل 4-25- نمودار ریز سختی پوششهای کامپوزیتی Cr-WC بر حسب مقادیر مختلف دانسیته جریان در حمام آبکاری با غلظت ذرات g/lit 10، فرکانس Hz 10، چرخه کاری %50، ساخارین و SDS هر کدام g/lit1.
    79
شکل 4-26- نرخ سایش پوششهای کامپوزیتی Cr-WC بر حسب دانسیته جریان در حمام آبکاری با غلظت ذرات g/lit 10، ساخارین و  SDSهر کدام g/lit 1، چرخه کاری %50 و فرکانس Hz 10.
    80
شکل 4-27- تصاویر SEM از سطوح سایش پوششهای کامپوزیتی Cr-WC بر حسب دانسیته جریانهای a) 6،   b) 8 و c) 20 آمپر بر دسیمتر مربع در حمام آبکاری با غلظت ذرات g/lit 10، ساخارین و  SDSهر کدام g/lit 1، چرخه کاری %50 و فرکانس Hz 10.
    81
شکل 4-28- نمودار ریز سختی پوششهای کامپوزیتی Cr-WC در فرکانسهای مختلف در حمام آبکاری با دانسیته جریان 8، چرخه کاری %50، غلظت ذرات g/lit 10، ساخارین و SDS هر کدام g/lit 1.
    82
شکل 4-29- نرخ سایش پوششهای کامپوزیتی Cr-WC بر حسب فرکانس در حمام آبکاری با دانسیته جریان 8، غلظت ذرات g/lit 10، چرخه کاری %50، ساخارین و SDSهر کدامg/lit  1.
    82
شکل 4-30- نمودار ریز سختی پوششهای کامپوزیتی Cr-WC در چرخه های کاری مختلف در حمام آبکاری با دانسیته جریان 8، غلظت ذرات g/lit 10، چرخه کاری %50، ساخارین و  SDSهر کدامg/lit  1.
83
شکل 4-31- نرخ سایش پوششهای کامپوزیتی Cr-WC بر حسب چرخه کاری در حمام آبکاری با دانسیته جریان 8، غلظت ذرات g/lit 10، فرکانس Hz 10، ساخارین و SDS هرکدام g/lit 1.
    84

چکیده
          آبکاری الکتریکی یکی از روش های مناسب جهت همرسوبی ذرات ریز فلزی، غیر فلزی و پلیمری در زمینه فلزی است. در این تحقیق پوشش نانوکامپوزیتی کرم-کاربیدتنگستن با استفاده از جریان پالسی مربعی روی فولاد کربنی ایجاد شد. تاثیر پارامترهای آبکاری مانند غلظت سورفکتانت SDS و افزودنی ساخارین به عنوان ریزکننده، دانسیته جریان، سیکل کاری و فرکانس بر روی سختی، درصد وزنی ذرات و نحوه توزیع آن ها در پوشش بررسی شد. در این تحقیق سعی شد عواملی همچون نوع حمام، دما، pH و میزان تلاطم ثابت در نظر گرفته شوند. به علاوه، تاثیر پارامترهای آبکاری بر رفتار سایشی پوشش مورد بررسی قرار گرفت. جهت بررسی مورفولوژی سطح پوشش و توزیع ذرات و درصد وزنی  آن ها در پوشش از میکروسکوپ الکترونی روبشی مجهز به آنالیزور EDS و جهت بررسی خواص پوشش از آزمون های سختی و سایش استفاده شد. نتایج نشان داد که افزایش غلظت ساخارین به حمام، به کاهش درصد وزنی ذرات و افزایش غلظت SDS تا 1 گرم بر لیتر به افزایش درصد وزنی ذرات و کاهش قطر ذرات و توزیع بهتر آن ها در پوشش منجر می شود. همچنین با افزایش دانسیته جریان تا 15 آمپر بر دسیمتر مربع به افزایش حضور ذرات در پوشش و افزایش سختی پوشش منجر می شود. با افزایش سیکل کاری حضور ذرات در پوشش کم می شود. افزایش فرکانس از 1 تا 1000 هرتز باعث افزایش حضور ذرات در پوشش می شود. همچنین حضور بیشتر و توزیع یکنواخت تر ذرات در پوشش منجر به افزایش سختی و (در پوششهای بدون ترک) بهبود مقاومت سایشی پوشش         می گردند.


مقدمه
       پوشش های کامپوزیتی با قرارگیری همزمان ذرات نارسانا و غیر محلول درون زمینه فلزی حاصل می شوند. این پوشش ها دارای خواص مکانیکی مطلوب بوده و در برابر سایش و خوردگی از پوشش های فلزی مقاومتر می باشند. میزان افزایش مقاومت آنها به مورفولوژی ذرات ریز خنثی درون پوشش کامپوزیتی و مقدار آنها بستگی دارد. کاهش اندازه دانه زمینه و همچنین کاهش قطر ذرات استحکام دهنده باعث بهبود خواص پوشش کامپوزیتی می شود. خواص خوب مکانیکی و مقاومت به اکسیداسیون و خواص مغناطیسی خوب این پوشش ها سبب شده در سال های اخیر مورد توجه خاصی قرار گرفته و در صنایع مختلف کاربرد زیادی پیدا کنند.
      روش رسوب دهی الکتریکی به علت سادگی و ارزانی، دمای پایین فرآیند، سادگی دستیابی به ساختار نانو و همچنین تولید پوشش هایی با دانسیته بالا و عاری از تخلخل یکی از روش های مناسب برای اعمال این پوشش ها بوده و در چند دهه گذشته مورد توجه خاص محققین بوده است.
      ذرات سرامیکی با ابعاد نانو، رسوبدهی پوشش های بسیار نازک را امکانپذیر ساخته اند به  گونه ای که ممکن است در واحدهای ساخت میکرومکانیک اجزای حرکتی و یاتاقانها بسیار مورد توجه و کاربرد باشند.
      پوشش های کرم تهیه شده به روش لایه نشانی الکتریکی در قطعات مهندسی بسیار مهمند. پوشش کرم به دلیل مقاومت سایشی و مقاومت شیمیایی بالا برای حفاظت از فلز پایه در مقابل سایش، خوردگی در دمای بالا و کاربرد های تزئینی کاربرد فراوانی دارد. پوشش های کامپوزیتی کرم منجر به بهبود ساختار رسوب کرم می شوند مثلا خواص سایشی و روانکاری پوشش بهبود می یابد. در زمینه پوشش های کامپوزیتی کرم کارهای بسیار کمی انجام شده است. ذرات مختلفی برای لایه نشانی همزمان با کرم استفاده شده است اما نکته قابل توجه مقدار بسیار محدود ذرات در پوشش کامپوزیتی است.


فصل اول

کلیات

کلیات
در این تحقیق پوشش نانوکامپوزیتی کرم-کاربید تنگستن، از ترکیب حمام کرم سه ظرفیتی به روش آبکاری الکتریکی و با استفاده از جریان پالسی بر روی فولاد کربنی اعمال می شود.
در این تحقیق از افزودنی های سدیم دو دسیل سولفات و ساخارین استفاده می شود. سدیم دو دسیل سولفات به عنوان فعال ساز سطح و ساخارین جهت صاف و براق کردن مورفولوژی پوشش بکار می رود.
تاثیر پارامترهای پالس ( دانسیته جریان٬ سیکل کاری و فرکانس پالس ) بر روی مورفولوژی پوشش بررسی می شود.
مورفولوژی پوشش اعمال شده با استفاده از میکروسکوپ الکترونی مجهز به آنالیزور EDS بررسی می شود و سختی پوشش ها با استفاده از دستگاه سختی سنج با فرورونده ویکرز و مقاومت سایشی آن ها با استفاده از روش پین روی دیسک انجام می شود.


دانلود با لینک مستقیم


پایان نامه اعمال پوشش نانوکامپوزیتی کرم-کاربید تنگستن بر روی فولاد کربنی و بررسی خواص سایشی آن