
تحقیقی کاربردی از سیستم های انتقال قدرت هیدرو دینامیکی تهیه شده در مرکز آموزش علمی کاربردی اراک
تحقیقی کاربردی از سیستم های انتقال قدرت هیدرو دینامیکی تهیه شده در مرکز آموزش علمی کاربردی اراک
فرمت فایل : word (قابل ویرایش) تعداد صفحات : 21 صفحه
فهرست
الکترونیک قدرت و محرکهای الکتریکی چرخان. 7
محرکهای الکتریکی جریان مستقیم 10
رگولاتورهای کاهنده - افزاینده 23
چکیده:
ارزیابی و بهبود قابلیت اطمینان از نیازمندی های اصلی در بهره بریداری و طراحی توسعه شبکه های قدرت است. از این رو، شرکت های برق همواره درصدد توسعه روش ها و ابزارهای ارزیابی قابلیت اطمینان هستند، تا با در دست داشتن تصویر واقعی از وضعیت قابلیت اطمینان شبکه خود، بسترهای بهبود آن را فراهم نمایند.
در مطالعات قابلیت اطمینان شبکه توزیع، اهمیت شاخص های نقطه بار در کنار شاخص های مشترک محوری و به عنوان مکمل یکدیگر قابل تامل است. شاخص نرخ خطا، به عنوان یکی از شاخص های نقطه بار، در شبکه توزیع از جمله شاخل های متداولی است که با مطالعه رفتار آن دانش وسیعی از ماهیت خطاهای شبکه به دست می آوریم.
در این پایان نامه رفتار نرخ خطای گذرا، به عنوان یکی از شاخص های نقطه بار قابلیت اطمینان مورد مطالعه قرار گرفته است. در این راستا، از مطالعه آماری خطاهای ثبت شده در گذشته شبکه آغاز می کنیم، و با تحلیل های آماری به سمت ارائه مدل گام برمی داریم. دو رویکرد مختلف برای ایجاد مدل در نظر گرفته شده است. در رویکرد اول فرض بر این است که فضای مساله قطعی است. به عبارت دیگر از وجود نایقینی ها در اطلاعات مساله صرفنظر شده است. به این منظور سه روش مدلسازی جهت تخمین نرخ خطای گذرا اعمال می شود؛ که شامل رگرسیون چند متغییره خطی به عنوان یک روش پارامتریک، دو روش مبتنی بر درخت تصمیم و شبکه های عصبی به عنوان روش های غیر پارامتریک (فاقد مدل) است.
رویکرد دوم به وجود عدم قطعیت در مساله می پردازد و روشی بر مبنای سیستم تطبیقی استنتاج فازی مبتنی بر شبکه عصبی برای مدلسازی پیشنهاد می دهد. نتایج پیاده سازی ها با ارزیابی مدل ها در قالب بررسی عملکرد هر مدل، مقایسه نتایج، و بحث بر مزایا و معایب هر مدل در مقابل مساله مورد مطالعه ارائه می شود.
فصل اول
مقدمه
1-1- انگیزش
ارزیابی و بهبود قابلیت اطمینان از نیازمندی های اصلی در بهره برداری و طراحی توسعه شبکه های قدرت است. این نیازمندی، خصوصا در فضای جدید بازار و مقررات زدایی، شرکت های برق را با چالش های اساسی مواجه می کند چرا که متضمن بقای آنها در عرصه رقابت خواهد بود. از این رو، شرکت های برق همواره درصدد توسعه روش ها و ابزارهای ارزیابی قابلیت اطمینان به عنوان زیرمجموعه ابزارهای مدیریت دارایی هستند، تا با در دست داشتن تصویر واقعی از وضعیت قابلیت اطمینان شبکه خود، بسترهای بهبود آن را فراهم نمایند.
شبکه توزیع انرژی الکتریکی که حلقه نهایی تحویل انرژی الکتریکی به مصرف کننده است، به علت ویژگی هایی نظیر گستردگی، تجهیزات زیاد و متنوع، نزدیکی به مصرف کننده، و… اهمیت بالایی دارد. متعاقباً مساله حفظ و بهبود قابلیت اطمینان آن بسیار حیاتی خواهد بود. از آنجا که ارزیابی قابلیت اطمینان مبتنی است بر داده های خاموشی گذشته، مطالعات آماری اتفاقات ثبت شده در سیستم مدیریت خاموشی به عنوان اولین و اساسی ترین حلقه از زنجیره ارزیابی تا بهبود قابلیت اطمینان، اجتناب ناپذیر می شود.
با توسعه ابزارهای آماری و تحلیل داده، به عنوان زیرمجموعه های دانش نوین داده کاوی، عرصه جدیدی در علوم مختلف توسعه یافته است که به استخراج دانش نهفته در پس داده های خامی که در انبارهای داده انباشته شده اند، می انجامد. بهره گیری شرکت های برق از چنین فرآیندی در زمینه های مختلف، منجر به اخذ تصمیم های کاراتر خواهد شد.
از دیدگاه ارزیابی قابلیت اطمینان شبکه توزیع، مطالعه آماری خطاهای شبکه، به شناسایی نقاط حادثه خیز و دلائل اصلی رخداد خطاها کمک می کند. اهمیت این مطالعات در تصمیم گیری جهت تدوین برنامه های نگهداری و تعمیرات عیان خواهد شد، چنان که روی بیلینتون در بیان می کند، شناسایی بخش هایی از سیستم که با صرف هزینه موجب بهبود قابلیت اطمینان می شود، باارزش تر است از محاسبه وضعیت کنونی قابلیت اطمینان در سیستم. به علاوه، ادغام این مطالعات با روش های مدلسازی و تخمین به تعیین رفتار متغییرهایی چون شاخص های قابلیت اطمینان می انجامد.
در مطالعات قابلیت اطمینان شبکه توزیع، اهمیت شاخص های نقطه بار در کنار شاخص های مشترک محور و به عنوان مکمل یکدیگر قابل تامل است. اگرچه عموم شرکت ها به شاخص های مشترک محور نظیر SAIFI و SAIDI بیشتر توجه دارند، ماهیت این شاخص ها تنها تصویری از میانگین وضعیت قابلیت اطمینان شبکه به دست می دهد. شاخص نرخ خطا، به عنوان یکی از شاخص های نقطه بار، در شبکه توزیع از جمله شاخص های متداولی است که با مطالعه رفتار آن دانش وسیعی از ماهیت خطاهای شبکه به دست می آوریم.
تعداد صفحه : 96
ترانسفور ماتور قدرت گازی GIS - ایمنی درانتقال
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:50
فهرست مطالب :
خلاصه گزارش 1
مقدمه 2
ویزگی ها و موارد قابل توجه ترانسفورماتورهای گازی 3
ساختمان و اصول طراحی ترانسفورماتورهای گازی 7
متعلقات ترانسفورماتور 11
سیستم حفاظتی 15
مفاهیم ایمنی 21
اصول و روشهای ایمنی 24
حوادث ناشی از کار 27
اصول ایمنی در الکتریسیته 29
آشنایی با مختصات آتش سوزی 30
دستور العمل کنترل موارد ایمنی در پستهای انتقال نیرو 36
آمار حوادث در پست فریمان 41
فهرست منابع42
چکیده :
پستها یکی از قسمتهای مهم شبکه های انتقال و توزیع الکتریکی می باشند زیرا وقتیکه بخواهیم انرژی الکتریکی را از نقطه ای به نقطه دیگر انتقال دهیم برای اینکه بتوانیم از افت ولتاژ جلوگیری کنیم بایستی بطریقی ولتاژ تولید شده ژنراتور را بالا برده و سپس آنرا انتقال داده تا به مقصد مورد نظر برسیم و در انجا دوباره ولتاژ را پایین آورده تا جهت توزیع آماده شود کلیة این اعمال در پستهای انتقال و توزیع انجام می شود. در یک پست فشار قوی وظیفه اصلی تبدیل ولتاژ می باشد که این وظیفه را مهمترین دستگاه یعنی ترانسفورماتورهای قدرت انجام می دهد، لذا در این جزوه سعی شده است مطالبی جدید دربارة ترانسفورماتور قدرت از نوع گازی GIS که در استان خراسان هم نمی باشد آورده شده و همچنین در مورد ایمنی در انتقال که مهمترین مسئله قبل از شروع به کار می باشد. بحث شده است تا مورد استفاده همکاران علاقه مند قرار گیرد.
در سالهای اخیر افزایش روز افزون مصرف انرژی الکتریکی ، گسترش شبکه های توزیع و فوق توزیع را در شهرها و مناطق صنعتی اجتناب ناپذیر نموده است با توجه به اینکه کمبود فضا و لزوم همسازی با محیط از یک طرف و جلوگیری از آثار آلودگی های مختلف از طرف دیگر پستهای گازی روز به روز کاربرد پیشتری می یابند ولی با این وجود به علت مسائل فنی موجود تاکنون ترانسفورماتورهای این پستها از نوع روغنی بوده و به منظور کنترل دامنة آتش سوزی احتمالی و مسائل مربوط به سیستم خنک کنندگی عمدتا در فضای باز نصب می شوند ولی اخیرا گاز sf6 نیز در طراحی و ساخت ترانسفورماتورهای با قدرت بالا مورد توجه قرار گرفته است و نسل جدیدی از ترانسفورماتورها را با عنوان ترانسفورماتورهای گازی مطرح نموده که در این جزوه مورد بررسی قرار می گیرد.
ویژگیها و موارد قابل توجه ترانسفورماتورهای گازی :
الف- از آنجا که گاز sf6در این ترانسفورماتورها جانشین روغن شده ، غیر قابل احتراق و انفجار بوده لذا در صورت بروز عیبهای متداول در ترانسفورماتور احتمال بروز آتش سوزی وجود ندارد لذا این ترانسفورماتورها برای کاربرد در فضاهای سر پوشیده بسیار مناسب می باشند و در هر صورت برای این ترانسفورماتورها ضرورت تعبیه سیستمهای اتوماتیک اطفاء حریق که بسیار گران و هزینه بردار می باشند وجود ندارد.
ب- با توجه به پایداری شیمیایی کامل گاز sf6 و عدم تاثیر شرایط محیطی بر روی عایق ترانسفورماتور در اثر ایزوله بودن کامل نسبت ب هوای محیط (نداشتن کنسرواتور) و پایداری حرارتی بالای این گاز امکان بروز عیب در این ترانسفورماتور به حداقل ممکن کاهش یافته و از آنجا این ترانسفورماتورها معمولا در پستهای با سوئیچگیرهای گازی مورد استفاده قرار می گیرند و ارتباط ترانسفورماتور با سوئیچگیرهای مربوطه از طریزق لوله های گازی ( GIB ) انجام می گیرد لذا امکان ایجاد اتصال کوتاه نیز در نزدیکی ترانسفورماتور به حداقل می رسد و لذا در مجموع قابلیت اطمینان سیستم به حداکثر می رسد.
ج- از انجاییکه این ترانسفورماتور به صورت کامل آب بندی بوده و قسمت اکتیو در داخل محفظه فلزی قرار دارد و حداقل دریچه برای بازدید و یا تعمیر در طرح ان در نظر گرفته می شود و با هوای محیط هیچ گونه ارتباطی ندارد لذا برای مناطق با آلودگی و رطوبت بالا مناسب می باشند.
د- انتقال صدا در گاز SF6کمتر از روغن و یا هوا بوده و لذا مقدار صدای ترانسفورماتورهای گازی نسبت به روغنی کمتر می باشد.
ه-گازSF6 به خاطر الکترونگاتیو بودن (جذب الکترونهای آزاد) از خاصیت عایقی خوبی برخوردار می باشد و به خاطر ویژگی خاص این گاز در مقابل اضافه ولتاژهای سوئیچینگ یا صاعقه طراحی ترانسفورماتور از نظر عایقی با اطمینان بالاتری صورت می گیرد.
و- مشخصات الکتریکی ترانسفورماتورهای گازی نظیر جریان بی باری و تلفات با نوع روغنی یکسان بوده ولی مقدار امپدانس این ترانسفورماتورها نسبت به نوع گازی کمی بیشتر از نوع روغنی به خاطر فواصل بیشتر بین سیم پیچها می باشد البته این پارامتر به سهولت قابل کنترل می باشد.
ز- با توجه به اینکه این ترانسفورماتور ها به صورت کاملا آب بندی شده حمل می شوند. لذا عملیات نصب و راه اندازی به علت عدم نیاز به پروسس خشک کردن و روغن زدن بسیار راحت تر بوده و در مقایسه با نوع روغنی به زمان کمتری نیاز می باشد. تعمیرات و بازدیدهای دوره ای در حین بره برداری نیز خیلی بندرت ضرورت پیدا می کند اما در صورت نیاز به بازدید داخلی از ترانسفورماتور بایستی توجه داشت که اگر چه گاز SF6سمی نمی باشد ولی چون وزن مخصوص آن بیشتر از هواست، در داخل تانک باقی مانده و ضروری است که قبل از وارد شدن به داخل تانک مقدار اکسیژن کنترل شده و در صورت لزوم اکسیژن نیز تزریق گردد.
ح- هدایت حرارتی گازSF6 اگر چه از هوا بیشتر می باشد ولی در مقایسه با روغن پایین تر بوده و لذا برای انتقال حرارت ناشی از تلفات ترانسفورماتور بایستی دقت لازم در طراحی سیستم خنک کنندگی صورت پذیرد و اصولا سیستمهای خنک کنندگی این نوع ترانسفورماتورها پیچیده تر از ترانسفورماتورهای روغنی می باشد.
ط- در این نوع ترانسفورماتورها امکان نشتی تدریجی گاز در حین بهره برداری وجودا داشته که به سهولت نوع روغنی نیز قابل رویت نمی باشد لذا بایستی طوری طراحی شوند که در صورت افت فشار گاز از نظر عایقی مشکل خاصی بوجود نیامده و ضمنا از انجا که افت فشار گاز به خاطر کاهش دانسیته ان درجه حرارت سیم پیچها را نیز افزایش می دهد لذا بایستی در چنین صورتی بار ترانسفورماتور نیز متناسبا کاهش داده شود که میزان ان بستگی به طرح سیستم خنک کننده دارد.
نمودارهای (1-9-2 )یک نمونه از تغییریات درجه حرارت سیم پیچی ترانسفورماتورها را نسبت به تغییر فشار گاز و بار ترانسفورماتور در دو حالت سیستم خنک کنندگی طبیعی و اجباری نشان می دهد.
و...
نام محصول: پروپوزال طراحی رله دیفرانسیل برای ترانسفورماتور قدرت با استفاده از تبدیل موجک
فرمت : word
تعداد صفحات : 14
زبان : فارسی
سال گردآوری : 94
رشته : مهندسی برق
تعداد رفرنس : 22
بیان مسئله :
در این پروژه الگوریتم جدید حفاظتی برای حفاظت دیفرانسیل ترانسفورماتورهای قدرت با استفاده از تبدیل موجک ارائه میشود. رله های دیفرانسیلی ترانسفورماتور قدرت از مهمترین بخش شبکه های برق میباشد. پدیدههای گذرا ترانسفورماتور قدرت شامل خطاهای داخلی، خطاهای خارجی و جریان هجومی میباشند. خطاهای داخلی ترانسفورماتور مربوط به یکی از اجزای ترانسفورماتور قدرت میباشد که از مهمترین این خطاها، میتوان خطای دور به زمین دور، دور به دور و سیمپیچ به سیمپیچ اشاره کرد. خطاهای خارجی ترانسفورماتور مربوط به ترانسفورماتور قدرت نمیباشد و به شبکه و بار بستگی دارد از خطاهای خارجی میتوان اضافه بار، اتصال کوتاه، اضافه ولتاژ اشاره کرد. جریان هجومی مغناطیسی شوندگی نیز به علت غیرخطی بودن هسته ترانسفورماتور در لحظه برقدار کردن ترانسفورماتور رخ میدهد. رله دیفرانسیل یک رله واحد میباشد. این رله فقط باید در شرایط وقوع خطاهای داخلی عملکرد داشته باشد و نباید در شرایط خطاهای خارجی و جریان هجوم شوندگی عملکرد داشته باشد. در رلههای استاندارد موجود خطاهای داخلی از جریان هجومی مغناطیسی به کمک هارمونیک مرتبه دوم متمایز میشود. یکی از مهمترین ویژگی رله دیفرانسیل سرعت بالا در حین وقوع پدیده های گذرا میباشد که رلههای دیفرانسیل هارمونیکی سرعت بالایی ندارد. در این تحقیق برای تمایز بین خطاهای داخلی جریان هجوم مغناطیس شوندگی از تبدیل موجک گسسته استفاده میشود و تا جای ممکن سعی میشود که معیارهای تعریف شده در سطح اول باشند تا رله هوشمند مناسب طراحی شود. از طرفی علاوه بر خطاهای داخلی و جریان هجوم مغناطیس کنندگی، خطاهای خارجی نیز در الگوریتم پیشنهادی در نظر گرفته میشود. با توجه به اینکه معیارها در سطح اول تعریف میشوند این رله از نظر ویژگی دقت ،سرعت و بار محاسباتی بسیار مناسب میباشد. با توجه به اینکه ترانسفورماتورهای قدرت از مهمترین اجزای هر شبکه بشمار میآیند حفاظت آنها بخش مهمی میباشد که باید به طور دقیق خطاهای ترانسفورماتور قدرت شناسایی شوند و از یکدیگر متمایز شوند. بنابراین شناسایی و تمایز پدیده های گذرا ترانسفورماتورهای قدرت امر ضروری میباشد و در این تحقیق انجام میشود.
ترانسفورماتورهای قدرت با اتصال نواحی مختلف با سطوح ولتاژ متفاوت نقش بسیار مهمی را در سیستمهای قدرت بازی میکنند. اکنون بیشترین توجه در سیستمهای قدرت، بالابردن پایداری و قابلیت اعتماد سیستمهای قدرت میباشد. اگر چه سیستمهای حفاظتی بهطور ایدهآل تمام خطاها و شرایط عملکرد نامطلوب سیستم قدرت را رفع نمیکنند، اما عملکرد سیستم حفاظتی روی قابلیت اعتماد و پایداری سیستمهای قدرت تاثیر زیادی دارد. مولفه کلیدی در حفاظت، رلههای حفاظتی هستند که کارکرد آنها، عملکرد در شرایط غیرنرمال سیستم قدرت است. حفاظت ترانسفورماتور قدرت بهعنوان جزء مهمی از سیستم قدرت یکی از دغدغههای اصلی مهندسین حفاظت بوده است. با توجه به اینکه ترانسفورماتور قدرت از مهمترین اجزای شبکه انتقال و توزیع بهشمار میرود، مشخصات و ویژگیهای خاص خود را دارد. برای تامین حفاظت مناسب و موثر، این ویژگیها باید بهدقت مورد بررسی و مطالعه قرار گیرند. همچنین انتخاب یک حفاظت مناسب برای ترانسفورماتور قدرت به ملاحظات اقتصادی نیز بستگی دارد، اگرچه این عامل برای ترانسفورماتورهای قدرت از اهمیت یکسان برخوردار نیست. در یک شبکه انتقال و توزیع، ترانسفورماتورهای قدرت با توان نامی از چند کیلوولت آمپر تا چند صد مگاولت آمپر ممکن است وجود داشته باشند. برای ترانسفورماتورها با قدرت کم، سادهترین و ارزانترین طرح حفاظت مثلا یک کلید فیوز ممکن است بکار گرفته شود، در حالیکه برای ترانسفورماتورهای با قدرت بسیار زیاد بهترین طرحهای حفاظتی را باید در نظر گرفت. خطاهای ترانسفورماتور به طور معمول بر حسب محل خطا به دو دسته خطاهای داخلی و خطاهای خارجی تقسیمبندی میشوند. خطاهای داخلی به آن دسته از خطاها گفته میشوند که به یکی از اجزای تشکیل دهنده ترانسفورماتور مربوط شوند. این خطاها، خطاهای سیمپیچ، خطاهای هسته، خطاهای محفظه فلزی، خطاهای سیستم خنککننده و خطاهای مکانیزم تغییر دهنده انشعاب میباشند. همه ترانسفورماتورها در یک شبکه قدرت قرار دارند، خطاهائی که در شبکه رخ میدهند و ترانسفورماتور را از شرایط کار عادی خارج میکنند، خطاهای خارجی ترانسفورماتور به شمار میآیند. مهمترین این خطاها، اضافه جریان، اضافه بار، اضافه ولتاژ و کاهش یا افزایش فرکانس میباشند. همچنین مسئله بزرگ در حفاظت ترانسفورماتور، جریان هجوم مغناطیسکنندگی است که در طول کلیدزنی در ترانسفورماتور قدرت ایجاد میشود. طرح حفاظت دیفرانسیلی برای ترانسفورماتور طرحی عمومی و جامع است که جریان خطا را تشخیص داده و عمل میکند. حفاظت دیفرانسیل باید در شرایط وقوع خطاهای داخلی عملکرد داشته باشد و در شرایط وقوع خطاهای خارجی و جریان هجومی عملکرد نداشته باشد که در این پروژه الگوریتم حفاظتی جدیدی برای تمایز بین این پدیده ها ارائه خواهد شد.