
دانلود کتاب مکانیک سیالات و هیدرولیک پیام نور
هادی سیاسر - عظیم شیر دلی
انتشار : پیام نور
فایل : pdf
تعداد صفحات : 363
دانلود کتاب مکانیک سیالات و هیدرولیک پیام نور
دانلود کتاب مکانیک سیالات و هیدرولیک پیام نور
هادی سیاسر - عظیم شیر دلی
انتشار : پیام نور
فایل : pdf
تعداد صفحات : 363
دانلود گزارش کارآموزی جوشکاری الکتروفیوژن مهندسی مکانیک در حرارت و سیالات
فرمت فایل: ورد قابل ویرایش
تعداد صفحات: 78
فهرست
نکاتی مهم در مورد جوشکاری الکتروفیوژن
اصول کلی انبارداری، نگهداری، حمل و نقل اجناس پلی اتیلن
بازرسی و کیفیت جوشکاری
طریقة تعمیر و جمعآوری علمکهای پلی اتیلن
نحوه تعمیرات شبکههای پلی اتیلن
معرفی دستگاه P2000
در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است. شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.
هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد. بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.
وقتی که اهداف IHPTET نهایت پیشرفت در کارآیی را ارائه می دهد، طبیعت بسیار رقابتی فضای کاری کنونی، افزایش بازده را برای تمام محصولات توربو ماشینی جدید طلب می کند. به خصوص با قیمتهای سوخت که بخش بزرگی از هزینه های مستقیم بهره برداری خطوط هوایی را به خود اختصاص داده است، SFC، یک فاکتور کارایی مهم برای موتورهای هواپیمایی تجاری می باشد.
اهداف مربوط به کارایی کلی موتور، مستقیما به ملزومات مربوط به بازده آیرودینامیکی مخصوص اجزاء منفرد توربو ماشین تعمیم می یابد. در راستای رسیدن به اهداف مورد نیازی که توسط IHPTET و بازار رقابتی به طور کلی آنها را تنظیم کرده اند، اجزای توربو ماشینها باید به گونه ای طراحی شوند که پاسخگوی نیازهای مربوط به افزایش بازده، افزایش کار به ازای هر طبقه، افزایش نسبت فشار به ازای هر طبقه، و افزایش دمای کاری، باشند.
بهبودهای چشمگیری که در کارایی حاصل خواهد شد، نتیجه ای از بکار بردن اجزایی است که دارای خواص آیرودینامیکی پیشرفته ای هستند. این اجزا دارای پیچیدگی بسیار بیشتری نسبت به انواع قبلی خود هستند که شامل درجه بالاتر سه بعدی بودن، هم در قطعه و هم در شکل مسیر جریان می باشد.
میدان های جریان مربوط به این اجزا نیز به همان اندازه پیچیده و سه بعدی خواهد بود. از آنجایی که درک رفتار پیچیده این جریان، برای طراحی موفق چنین قطعاتی حیاتی است، وجود ابزارهای تحلیلگر کارآتری که از دینامیک سیالات محاسباتی (CFD) بهره می برند، در پروسه طراحی، اساسی می باشد.
در گذشته، طراحی قطعات توربو ماشین ها با استفاده از ابزارهای ساده ای که بر اساس مدلهای جریان غیر لزج دو بعدی بودند کفایت می کرد. اگرچه با روند کنونی به سمت طراحی ها و میدانهای جریان پیچیده تر، ابزارهای پیشین دیگر برای تحلیل و طراحی قطعات با تکنولوژی پیشرفته مناسب نیستند. در حقیقت جریانهایی که با این قطعات برخورد می کنند، به شدت سه بعدی (3D)، ویسکوز، مغشوش و اغلب با سرعت ها ، در حد سرعت صوت می باشند. این جریان های پیچیده، قابل فهم و پیش بینی نیستند، مگر با بکار بردن تکنیک های مدلسازی که به همان اندازه پیچیده هستند. برای پاسخگویی به نیاز طراحی چنین قطعاتی، ابزارهای CFD پیشرفته ای لازم است که قابلیت تحلیل جریانهای سه بعدی، لزج و در محدوده صوتی، مدل سازی اغتشاش و انتقال حرارت و برخورد با پیکربندی های هندسی پیچیده را داشته باشد. علاوه بر این، جریانهای گذرا (ناپایا) و تعامل ردیفهای چندگانه تیغه ها باید مورد ملاحظه قرار گیرد.
هدف این فصل این است که بازنگری مختصری از مشخصات جریان در انواع مختلف قطعات توربوماشینها ارائه داده و نیز خلاصه ای از قابلیتهای تحلیلی CFD که مورد نیاز برای مدل کردن چنین جریانهایی هستند را بیان کند.
این باید به خواننده، درک بهتری در مورد تاثیر جریان بر طراحی چنین اجزایی و میزان کارایی مدل سازی مورد نیاز برای آنالیز اجزاء بدهد. تمرکز بر روی کاربردهای موتورهای هواپیما خواهد بود، ولی دهانه های ورودی، نازلها و محفظه های احتراق مورد توجه خواهند بود. به علاوه یک بررسی از هر دو گرایش طراحی قطعات و ابزارهای تحلیل CFD را شامل می شود. به علت پیچیدگی این موضوعات، تنها یک بحث گذرا ارائه خواهد شد. اگرچه مراجع فراهم شده اند تا به خواننده اجازه دهد این مباحث را با جزئیات بیشتر جستجو کند.
پیش گفتار
1- بخش اول
1-1 دینامیک سیالات در توربوماشینها 1
2-1 مقدمه 1
3-1 ویژگیهای میدانهای جریان در توربوماشینها 4
4-1 ویژگیهای اساسی جریان 4
5-1 جریان در دستگاههای تراکمی 7
6-1 جریان در فن ها و کمپرسورهای محوری 8
7- 1جریان در کمپسورهای سانتریفیوژ 16
8-1 جریان در سیستمهای انبساطی 21
9-1 جریان در توربینهای محوری 23
10-1 جریان در توربینهای شعاعی 37
11-1 مدلسازی میدانهای جریان توربوماشینها 41
12-1 مراحل مختلف مدلسازی مرتبط با فرآیند طراحی 42
13-1 مدلسازی جریان برای پروسس طراحی ابتدائی 44
14-1 مدلسازی جریان برای پروسس طراحی جز به جز 46
15-1 قابلیتهای حیاتی برای تجهیزات آنالیز جریان در توربوماشینها 47
16-1 مدلسازی فیزیک جریان 49
17-1 معادلات حاکم و شرایط مرزی 50
18-1 مدلسازی اغتشاش وانتقال 55
19-1 تحلیل ناپایداری و اثر متقابل ردیف پره ها : 61
20-1تکنیک های حل عددی 65
21-1 مدلسازی هندسی 70
22-1 عملکرد ابزار تحلیلی 77
23-1 ملاحظات مربوط به قبل و بعد از فرآیند 81
24-1 انتخاب ابزار تحلیلی 86
25-1 پیش بینی آینده 89
26-1 مسیرهای پیش رو در طراحی قطعه 90
27-1 مسیرهای پیش رو در قابلیتهای مدلسازی 93
28-1 خلاصه 96
مراجع 99
2- بخش دوم
1-2 آزمونهای کارآیی توربو ماشینها 104
2-2 آزمونهای کارآیی آئرودینامیکی 104
3-2 اهداف فصل 104
4-2 طرح کلی بخش 105
5-2 تست عملکرد اجزا 106
6-2 تأثیر خصوصیات عملکردی بر روی بازده 109
7- 2تست عملکرد توربو ماشینها 113
8-2 روش تحلیل تست 114
9-2 اطلاعات عملکردی مورد نیاز 115
10-2 اندازه گیریهای مورد نیاز 115
11-2 طراحی ابزار و استفاده از آنها 120
12-2 اندازه گیری فشار کل 120
13-2 اندازه گیری های فشار استاتیک 129
14-2 اندازه گیریهای درجه حرارت کل 131
15-2 بررسی های شعاعی 133
16-2 Rake های دنباله 136
17-2 سرعتهای چرخ روتور 138
18-2 اندازه گیریهای گشتاور 139
19-2 اندازه گیریهای نرخ جریان جرم 139
20- 2اندازه گیریهای دینامیکی : 140
21-2 شرایط محیطی 143
22-2 سخت افزار تست 143
23-2 ملاحظات طراحی وسایل 148
24-2 نیازهای وسایل 149
25-2 ابزارآلات بازده 151
26-2 اندازه گیریهای فشار 151
27-2 اندازه گیریهای دما 155
28-2 اندازه گیریهای زاویه جریان 158
29-2 روشهای تست و جمع آوری اطلاعات 161
30-2پیش آزمون 161
31-2 فعالیت های روزانه قبل از آزمون 162
32-2 در طی آزمون 163
33-2 روشهای آزمون 163
34-2 ارائه اطلاعات 165
35-2 تحلیل و کاهش اطلاعات 165
36-2 دبی اصلاح شده 166
37-2 سرعت اصلاح شده 167
38-2 پارامترهای بازده 167
39-2 ارائه اطلاعات 170
40-2 نقشه های کارآیی 170
41-2 مشخص کردن حاشیه استال (stall margin) 171
مراجع 173
شامل 173 صفحه فایل word قابل ویرایش
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه13
تخمین ضریب سیالات غیردارسی از اطلاعات تست Buildup چاه
خلاصه:
در روش گسترش یافته برای محاسبه عکس العمل فشار برای چاه با ذخیره ثابت وضریب پوسته شدن غیردارسی عبوری تکمیل شده است.
روشی که از نمودارهای تولیدی برای Builup,drawdown استفاده شده است.Build up فشاری برای چاه با سیال عبوری غیردارسی وتکمیل ارائه مقدار شیب عبوری ازچاه بشری در مقایسه با جریان دارسی با shin ثابت نشان می دهد.
مخازنی که با ثابت ذخیره چاه مشابه سازی نشده اند. ضریب پوسته شدن میتواند با تولید دوباره در شیب گسترش یابد بنابراین اگر آن در فشار Buil up حاضر باشد چاه کاهش ذخیره و یا کاهش ضریب پوسته شدن و یا هر دو را تجربه خواهد کرد.
با نمودارهای جدید در شرایط نامناسب هر دوترکیبات پوسته شدن دارسی وغیردارسی ممکن است تخمین زده شود با یک تست Build up که از تولید ثابت پیروی می کند. این روش جدید اغلب ممکن است شامل چندین مرتبه جریان دهی به سیال و زمان Build up باشد.
مقدمه:
تایید آنالیز تولید سیستم یکی از اولین ابزارهای برای بهینه کردن تولید و پیش بینی اثرجاه است. آنالیز اثر مخازن به وسیله IPR یا نمودار اثر جریان دهی سیال تایید میشود. برای درست ساختن IPR برای چاه های گاز باید اجزا پوسته شدن در حالت Darcy وغیر دارسی شناخته شوند.
پوسته شدن غیردارسی به صورت سنتی با عملکرد تست چندگانه تخمین زده می شود. اثر ضریب پوسته ای به صورت تابعی از جریان ترسیم میشود. به هر حال نتایج آن ممکن است خطایی در حدود 100% داشته باشد.
رفتار تست فشار گداز با حرکت نامتناهی حلقوی باذخیره ثابت چاه وضریب پوسته ای شدن چاه شناخته میشودو از دیگر تغییرات ذخیره چاه را با ضریب پوسته ای شدن به صورت ثابت در نظر گرفته اند.
این مقاله رفتار چاه با ذخیره ثابت و درصد وابستگی ضریب پوسته ای شدن Build up,Drawn down را امتحان می کند.
تست های Build up با ضریب پوسته غیردارسی مقدار شیب بیشتری از ضریب پوسته غیردارسی در زمان بیرون رفتن ذخیره چاه دارند و آن در شکل 1 دیده می شود.
این نمودارهای جدید سه راه معین برای صنایع هستند. 1 آنها اجازه میدهند که آنالیز تست با جریان غ
((پیشگفتار))
*پیش درآمد:
در درس مکانیک تحلیلی که مربوط به حرکت اجسام صلب بود , با اصول و قوانین نیوتن , پایستگی تکانه , انرژی و تکانه ی زاویه ای به خوبی آشنا شدیم و آنها را در حل مسایل مربوطه بکار بریم . مکانیک سیالات نیز بخشی از علم مکانیک است که در آن استاتیک و دینامیک مایعات و گازها مطالعه میشود .اگرچه این مطالعات نیز مانند مکانیک اجسام صلب بر اساس قوانین اصلی مکانیک استوار است ولی دو فرق عمده و مهم بین این دو مکانیک وجود دارد:
1. خواص و ویژگیهای سیالات با جامدات سبکی متفاوت است و این ویژگی ها اغلب با حرکت سیال تغییر می کند .
2. در مکانیک جامدات معمولا حرکت اجسامی با جرم و ابعاد مشخص بررسی میشود ولی در مکانیک سیالات مطالعه ی حرکت پیوسته ی سیال , به صورت یک جریان مورد نظر می باشد. به بیان دیگر در مکانیک اجسام صلب مسیر حرکت ذره مشخص است ولی در مکانیک سیالات این مسیر نا مشخص و امکان مطالعه ی حرکت ذره ی منفرد وجود ندارد . در نتیجه با توجه به نکات بالا حل کامل معادلات حرکت سیالات معمولا امکان پذیر نیست و در معادلات نظری آن ضروری است که فرض هایی در نظر گرفته شود تا در عمل این معادلات به معادلات آسانتری تبدیل شود . بنابراین استفاده از نتایج نظری بدست آمده هنگامی مسیر خواهد شد که آنها را با آزمایشهای تجربی تصحیح و تکمیل کرد .
* فصل 1
ویژگی های سیال
1-1 مقدمه:
دانش فناوری مکانیک سیالات با درک و مفاهیم ویژگی های سیال و همچنین بکارگیری قوانین اساسی مکانیک و ترمودینامیک و انجام آزمایشهای دقیق بسیار گسترش یافته است .
ویژگی چسبندگی و چگالی در جریان داخل کانالهای باز و بسته و جریان در پیرامون اجسام شناور در سیال نقش عمده ای در مکانیک سیالات دارد . به هنگامی که با کاهش فشار روبرو هستیم , فشار بخار نیز که موجب تغییر فاز (حالت) مایع به گاز می شود , اهمیت می یابد .
در این فصل ابتدا به تعریف سیال و سیستم بین المللی یکاها (SI) و سپس به بررسی ویژگی ها و تعریف های فوق می پردازیم .
2-1 تعریف سیال:
سیال ماده ای است که در اثر تنش برشی حتی ناچیز به طور دائم تغییر شکل می دهد . تنش برشی متوسط برابر با تقسیم نیروی برشی بر سطح است .
توجه داریم که نیروی برشی همان مولفه ی مماسی نیرو بر سطح مزبور می باشد . حال اگر این سطح آنقدر کوچک شود که به یک نقطه تبدیل شود آنگاه حد نیروی برشی بر این سطح نقطه ای را تنش برشی در یک نقطه می گویند .
در شکل (1-1) ماده ای در بین دو صفحه موازی و نزدیک بهم نشان داده شده است .
فرض می کنیم صفحات آنقدر بزرگ باشند تا از شرایط لبه های آنها بتوان صرف نظر کرد . اگر صفحه ی پایین ثابت باشد و نیروی F صفحه یبالا به مساحت A را بکشد . در نتیجه F/A همان تنش برشی بر این ماده است.
هنگامی که نیروی F باعث شود صفحه ی بالایی با سرعت یکنواخت (اما مخالف صفر) حرکت کند, می توان نتیجه گرفت که ماده ی موجود بین دو صفحه مذبور , یک سیال است .
به طور تجربی معلوم شده است که ذرات سیال مجاور صفحات , سرعتی برابر با سرعت لایه های مرزی خواهند داشت . سیال موجود در سطح abcd به موقعیت جدید a b'c'd' می رسد.
هر ذره سیال موازی صفحه حرکت می کند , بنابراین سرعت u از صفحه پایین که سرعت آن صفر است تا صفحه بالایی که سرعتش U می باشد , تغییر می کند . آزمایش نشان می دهد اگر سایر کمیات ثابت باشد F با A , U نسبت مستقیم و با ضخامت سیال نسبت عکس دارد . یعنی داریم :
F= µ AU/t
که در آن µ ضریب تناسب است و مربوط به ویژگی های هر سیال می شود . اما اگر تنش برشی را به صورت زیر در نظر بگیریم Z=F/A
آنگاه داریم :
Z = µ U / t
توجه داریم , نسبت u/t , همان سرعت زاویه ای خط ab یا به بیان دیگر میزان کاهش زاویه ای bad است .
اما نسبت u/t , du/dy هر دو حاصل تقسیم تغییرات سرعت بر مسافتی می باشد که این تغییرات در طول آن انجام می گیرد . بنابراین رابطه ی (1-1) را می توان به صورت رابطه ی دیفرانسیلی زیر درآورد:
du/dt µ =Z
رابطه ی بالا , نشان دهنده ی ارتباط تنش برشی با سرعت تغییر شکل زاویه ای یک جریان تک بعدی است .
µضریب تناسب را چسبندگی سیال و معادله (2-1) را قانون چسبندگی نیوتن می نامند .
توجه داریم تعریف سیال , مواد غیر سیال را شامل نمی شود . به طور مثال یک ماده ی پلاستیکی متناسب با مقدار نیروی وارد بر آن به میزان معینی تغییر شکل می دهد ولی این تغییر شکل دائمی نیست .
3-1 یکاهای نیرو ، جرم ، طول و زمان
در حل مسایل مکانیک , یکاهای نیرو , جرم , طول و زمان نقش مهمی دارند . همچنین از این یکاها می توان , یکاهای دیگر را بدست آورد .
سیستم بین المللی یکاها (SI) , در اغلب کشورهای جهان پذیرفته شده است و در چند سال آینده انتظار می رود که تمامی کشورها این سیستم را بپذیرند و از آن استفاده کنند . در این سیستم نیوتن N یکای نیرو , کیلوگرم Kg یکای جرم , مترm یکای طول و ثانیه S یکای زمان است.و یک نیوتن به صورت زیر تعریف میشود:
(3-1) N = 1 Kg m/s2
نیرویی که به علت جاذبه بر جسمی وارد می شود را نیروی گرانش یا وزن آن جسم می نامند .
توجه داریم که جرم یک جسم با تغییر مکان یا محل تغییر نمیکند ولی نیروی گرانش یا وزن جسم تغییر میکند زیرا این نیرو برابر با حاصل ضرب جرم جسم در شتاب جاذبه g بدست می آید .
(4-1) F=mg
در سیستم بین المللی یکاها , شتاب گرانش استاندارد برابر با 9/806 m/s2 میباشد .
در این درس علائم اختصاری سیستم یکای SI با حروف کوچک مانند ساعت h , متر m و ثانیه s نشان داده می شود . برای بعضی از یکاها در این سیستم از حرف اول اسامی دانشمندان استفاده می شود :
وات W ، پاسکال Pa ، نیوتن N و . . .
اهمیت این سیستم در استفاده از مضارب 10 یا 10/1 به صورت پیشوند است . در جدول (1-1) پیشوندهایی که کاربرد بیشتری دارند آمده است .
شامل 252 اسلاید powerpoint