حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق درمورد اتم

اختصاصی از حامی فایل دانلود تحقیق درمورد اتم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

اتم

یک اتم ، کوچکترین جزء اصلی غیر قابل تقلیل یک سیستم شیمیایی می‌باشد .

ریشه لغوی

این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد

تاریخچه شناسایی اتم

مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.

راجر بوسویچ نظریه خود را بر مبنای مکانیک نیوتنی قرارداد و آنرا در سال 1758 تحت عنوان:

Theoria philosophiae naturalis redacta ad unicam legem virium in natura existentium

چاپ نمود.

 

براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم

اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم

در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها

اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.

اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

ساده‌ترین اتم

ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم‌ها

واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند.


دانلود با لینک مستقیم


دانلود تحقیق درمورد اتم

دانلود مقاله کامل درباره اتم

اختصاصی از حامی فایل دانلود مقاله کامل درباره اتم دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره اتم


دانلود مقاله کامل درباره اتم

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :29

 

بخشی از متن مقاله

ریشه لغوی اتم

این کلمه ، از کلمه یونانی atomos ، غیر قابل تقسیم ، که از a- ، بمعنی غیر و tomos، بمعنی برش ، ساخته شده است. معمولا به معنای اتم‌های شیمیایی یعنی اساسی‌ترین اجزاء مولکول‌ها و مواد ساده می‌باشد.

تاریخچه شناسایی اتم

مواد متنوعی که روزانه در آزمایش و تجربه با آن روبه رو هستیم، متشکل از اتم‌های گسسته است. وجود چنین ذراتی برای اولین بار توسط فیلسوفان یونانی مانند دموکریتوس (Democritus) ، لئوسیپوس (Leucippus) و اپیکورینز (Epicureanism) ولی بدون ارائه یک راه حل واقعی برای اثبات آن ، پیشنهاد شد. سپس این مفهوم مسکوت ماند تا زمانیکه در قرن 18 راجر بسکوویچ (Rudjer Boscovich) آنرا احیاء نمود و بعد از آن توسط جان دالتون (John Dalton) در شیمی بکار برده شد.

 

براساس نظریه بوسویچ ، اتمها نقاط بی‌اسکلتی هستند که بسته به فاصله آنها از یکدیگر ، نیروهای جذب کننده و دفع کننده بر یکدیگر وارد می‌کنند. جان دالتون از نظریه اتمی برای توضیح چگونگی ترکیب گازها در نسبتهای ساده ، استفاده نمود. در اثر تلاش آمندو آواگادرو (Amendo Avogadro) در قرن 19، دانشمندان توانستند تفاوت میان اتم‌ها و مولکول‌ها را درک نمایند. در عصر مدرن ، اتم‌ها ، بصورت تجربی مشاهده شدند.

اندازه اتم

اتم‌ها ، از طرق ساده ، قابل تفکیک نیستند، اما باور امروزه بر این است که اتم از ذرات کوچکتری تشکیل شده است. قطر یک اتم ، معمولا میان 10pm تا 100pm متفاوت است.

ذرات درونی اتم

در آزمایش‌ها مشخص گردید که اتم‌ها نیز خود از ذرات کوچکتری ساخته شده‌اند. در مرکز یک هسته کوچک مرکزی مثبت متشکل از ذرات هسته‌ای ( پروتون‌ها و نوترون‌ها ) و بقیه اتم فقط از پوسته‌های متموج الکترون تشکیل شده است. معمولا اتم‌های با تعداد مساوی الکترون و پروتون ، از نظر الکتریکی خنثی هستند.

طبقه‌بندی اتم‌ها

اتم‌ها عموما برحسب عدد اتمی که متناسب با تعداد پروتون‌های آن اتم می‌باشد، طبقه‌بندی می‌شوند. برای مثال ، اتم های کربن اتم‌هایی هستند که دارای شش پروتون می‌باشند. تمام اتم‌های با عدد اتمی مشابه ، دارای خصوصیات فیزیکی متنوع یکسان بوده و واکنش شیمیایی یکسان از خود نشان می‌دهند. انواع گوناگون اتم‌ها در جدول تناوبی لیست شده‌اند.

اتم‌های دارای عدد اتمی یکسان اما با جرم اتمی متفاوت (بعلت تعداد متفاوت نوترون‌های آنها) ، ایزوتوپ نامیده می‌شوند.

ساده‌ترین اتم

ساده‌ترین اتم ، اتم هیدروژن است که عدد اتمی یک دارد و دارای یک پروتون و یک الکترون می‌باشد. این اتم در بررسی موضوعات علمی ، خصوصا در اوایل شکل‌گیری نظریه کوانتوم ، بسیار مورد علاقه بوده است.

واکنش شیمیایی اتم‌ها

واکنش شیمیایی اتم‌ها بطور عمده‌ای وابسته به اثرات متقابل میان الکترون‌های آن می‌باشد. خصوصا الکترون‌هایی که در خارجی‌ترین لایه اتمی قرار دارند، به نام الکترون‌های ظرفیتی ، بیشترین اثر را در واکنش‌های شیمیایی نشان می‌دهند. الکترون‌های مرکزی (یعنی آنهایی که در لایه خارجی نیستند) نیز موثر می‌باشند، ولی بعلت وجود بار مثبت هسته اتمی ، نقش ثانوی دارند.

 

 پیوند میان اتم‌ها

اتم‌ها تمایل زیادی به تکمیل لایه الکترونی خارجی خود و (یا تخلیه کامل آن) دارند. لایه خارجی هیدروژن و هلیم جای دو الکترون و در همه اتمهای دیگر طرفیت هشت الکترون را دارند. این عمل با استفاده مشترک از الکترونهای اتم‌های مجاور و یا با جدا کردن کامل الکترون‌ها از اتمهای دیگر فراهم می‌شود. هنگامیکه الکترونها در مشارکت اتمها قرار می گیرند، یک پیوند کووالانسی میان دو اتم تشکیل می‌گردد. پیوندهای کووالانسی قویترین نوع پیوندهای اتمی می‌باشند.

یون

هنگامیکه بوسیله اتم ، یک یا چند الکترون از یک اتم دیگر جدا می‌گردد، یون‌ها ایجاد می‌شوند. یون‌ها اتم‌هایی هستند که بعلت عدم تساوی تعداد پروتو ن‌ها و الکترون‌ها ، دارای بار الکتریکی ویژه می‌شوند. یون‌هایی که الکترون‌ها را برمی‌دارند، آنیون (anion) نامیده شده و بار منفی دارند. اتمی که الکترون‌ها را از دست می‌دهد کاتیون (cation) نامیده شده و بار مثبت دارد.

پیوند یونی

کاتیون‌ها و آنیون‌ها بعلت نیروی کولمبیک (coulombic) میان بارهای مثبت و منفی ، یکدیگر را جذب می‌نمایند. این جذب پیوند یونی نامیده می‌شود و از پیوند کووالانسی ضعیفتر است.

مرز مابین انواع پیوندها

همانطور که بیان گردید، پیوند کوالانسی در حالتی ایجاد میشود که در آن الکترون‌ها بطور یکسان میان اتمها به اشتراک گذارده می‌شوند، درحالیکه پیوند یونی در حالی ایجاد می‌گردد که الکترون‌ها کاملا در انحصار آنیون قرار می‌گیرند. بجز در موارد محدودی از حالتهای خیلی نادر ، هیچکدام از این توصیف‌ها کاملا دقیق نیست. در بیشتر موارد پیوندهای کووالانسی ، الکترون‌ها بطور نامساوی به اشتراک گذارده میشوند، بطوریکه زمان بیشتری را صرف گردش بدور اتم‌های با بار الکتریکی منفی‌تر می‌کنند که منجر به ایجاد پیوند کووالانسی با بعضی از خواص یونی می‌گردد.

بطور مشابهی ، در پیوندهای یونی ، الکترون‌ها اغلب در مقاطع کوچکی از زمان بدور اتم با بار الکتریکی مثبت‌تر می‌چرخند که باعث ایجاد بعضی از خواص کووالانسی در پیوند یونی می‌گردد

  آرایش الکترونی عناصر آشنایی

آرایش الکترونی نحوه چنیش الکترونها را در لایه‌های اطراف هسته اتم نشان می‌دهد. کار را با اتم هیروژن که یک الکترون در اوربیتال 1s دارد، آغاز می‌کنیم. با افزودن یک الکترون ، آرایش الکترونی اتم عنصر بعدی He که 1s2 است بدست می‌آید. به این ترتیب از عنصری به عنصر بعدی می‌رویم تا به آرایش الکترونی اتم مورد نظر می‌رسیم. این روش در ابتدا از طرف ولفگانگ پاولی مطرح شد و به روش «بناگذاری» موسوم است.

 

الکترون متمایز کننده

الکترونی که در روش بناگذاری ، به آرایش الکترونی یک عنصر افزوده می‌شود تا عنصر بعدی بدست آید، الکترون متمایز کننده نامیده می‌شود. این الکترون آرایش الکترونی اتم یک عنصر را از اتم عنصر پیشین متمایز می‌کند. الکترون متمایز کننده در هر مرحله به اوربیتال خالی دارای کمترین انرژی افزوده می‌شود.

آرایش الکترونی صحیح عناصر

آرایش الکترونی صحیح عناصر به صورت زیر است:


... ، 1s ، 2s ، 2p ، 3s ، 3p ، 4s ، 3d ،4p ، 5s ، 4d ، 5p ، 6s ، 4f ، 5d ، 6p ، 7s ،5f ، 6d ، 7p.

انرژی لایه‌های فرعی

انرژی همه اوربیتالهای یک پوسته فرعی یکسان است. مثلا انرژی هر اوربیتال 3p برابر انرژی هر یک از دو اوربیتال 3p دیگر است. تمام پنج اوربیتال 3d نیز انرژی یکسان دارند. اما در یک پوسته اصلی ، پوسته‌های فرعی مختلف انرژی متفاوت دارند. برای هر مقدار n ، انرژی پوسته‌های فرعی به ترتیب s < p < d < f افزایش می‌یابند.

در پوسته n = 3 ، اوربیتال 3s کمترین انرژی ، اوربیتالهای 3p ، انرژی متوسط و اوربیتالهای 3d حداکثر انرژی را دارند. گاهی انرژی اوربیتالهای مربوط به پوسته‌های مختلف ، همپوشانی دارند. مثلا در بعضی از اتمها ، اوربیتال 4s ، کم انرژی‌تر از اوربیتال 3d است.

    ترتیب قرار دادن اوربیتالها

ترتیب معینی برای قرار دادن متوالی اوربیتالها برحسب انرژی که برای تمام اتمها صدق می‌کند، وجود ندارد. در فرآیند فرضی بناگذاری ، خصلت اتم به موازات افزایش یافتن تعداد پروتون و نوترون در هسته و نیز اضافه شدن تعداد الکترونها تغییر می‌کند. خوشبختانه ، تغییرات ترتیب انرژی اوربیتالی از عنصری به عنصر بعد به تدریج و بطور منظم صورت می‌پذیرد. این ترتیب تنها برای موقعیتهای اوربیتالی که الکترون متمایز کننده در فرآیند بناگذاری در آن جا می‌گیرد صادق است.

به این ترتیب که از 1s شروع می‌کنیم و به تدریج اوربیتالهای بالاتر را پر می‌کنیم. باید توجه کنیم که در پوسته فرعی p سه اوربیتال ، در d پنج اوربیتال و در f هفت اوربیتال وجود دارد. هر پوسته فرعی را پیش از آنکه به پوسته بعدی الکترون داده شود، پر می‌کنیم.

جدول تناوبی و آرایش الکترونی

برای بدست آوردن آرایش الکترونی می‌توان جدول تناوبی را مورد استفاده قرار داد. نوع الکترون متمایز کننده به موقعیت عنصر در جدول تناوبی ارتباط داده می‌شود. توجه کنید که جدول را می‌توان به یک دسته «s» ، یک دسته «p» ، یک دسته «d» ، و یک دسته «f» تقسیم کرد. برای عناصر دسته «s» ، و دسته «p» ، عدد کوانتومی اصلی الکترون متمایز کننده ، مساوی شماره تناوب ، برای عناصر دسته «d» برابر با شماره تناوب منهای یک و برای عناصر دسته «f» مساوی با شماره تناوب منهای دو است.

  • برای آنکه بتوانید بحث را برای بدست آوردن آرایش الکترونی تعقیب کنید، باید یک جدول تناوبی دم دست داشته باشید. به عنوان مثال ، اولین تناوب از دو عنصر تشکیل شده است، (هیدروژن و هلیوم) که هر دوی آنها ، از عناصر دسته «s» هستند. آرایش الکترونی هیدروژن 1s1 و از آن هلیوم 1s2 است.
  • تناوب دوم با لیتیم (1s1 2s1) و بریلیم (1s2 2s2) آغاز می‌شود که در آنها الکترونها به اوربیتال 2s افزوده می‌شوند. در شش عنصری که این تناوب را تکمیل می‌کنند، یعنی بور (1s2 2s2 2p1) تا گاز نجیب نئون (1s2 2s2 2p6) الکترونها یک به یک به سه اوربیتال 2p افزوده می‌شوند.
  • الگوی تناوب دوم در تناوب سوم نیز تکرار می‌شود. دو عنصر دسته «s» ، سدیم (1s2 2s2 2p6 3s1) و منیزیم (1s2 2s2 2p6 3s2) هستند. شش عنصر «دسته p» از آلومینیوم (1s2 2s2 2p6 3s2 3p1) تا گاز نجیب آرگون (1s2 2s2 2p6 3s2 3p6) را در بر می‌گیرند.
  • در بحث مربوط به آرایش الکترونی بقیه عناصر ، تنها اوربیتالهای بیرونی نشان داده خواهند شد.

آند و کاتد

مقدمه

پیلی که به عنوان منبع انرژی الکتریکی بکار می‌رود، یک پیل ولتایی یا یک گالوانی نامیده می‌شود که از نام آلساندو ولتا و لوئیجی گالوانی ، نخستین کسانی که تبدیل انرژی شیمیایی به انرژی الکتریکی را مورد آزمایش قرار دادند، گرفته شده است. در این پیل ، نیم پیلی که در آن واکنش اکسیداسیون صورت می‌گیرد، نیم پیل آند و نیم پیلی که در آن واکنش کاهش یا احیا صورت می‌گیرد، نیم پیل کاتد نامیده می‌شود. در ترسیم یک پیل گالوانی ، نیم پیل آند در سمت چپ و نیم پیل کاتد در سمت راست نمایش داده می‌شود.

 

پیل دانیل

در یک دانیل ، نیم پیل سمت چپ شامل الکترودی از فلز روی و محلول ZnSO4 و نیم پیل سمت راست شامل الکترودی از فلز مس در یک محلول CuSO4 است. این دو نیم پیل توسط یک دیواره متخلخل از هم جدا شده‌اند. این دیواره از اختلاط مکانیکی محلولها ممانعت می‌کند، ولی یونها تحت تأثیر جریان الکتریکی از آن عبور می‌کنند. واکنش نیم پیل آند به صورت Zn(s) Zn2 + (aq)+ 2e و واکنش نیم پیل کاتد به صورت (2e + 2 + Cu(aq) Cu(s است.

آند

هرگاه الکترودهای روی و مس با یک سیم به هم متصل شوند، الکترونها از الکترود روی به طرف الکترود مس جاری می‌شوند. در الکترود روی ، فلز روی اکسید می‌شود و به صورت یونهای روی در می‌آید. این الکترود ، آند پیل است و الکترونهایی که محصول اکسیداسیون هستند، از این قطب ، پیل را ترک می‌کنند.

کاتد

الکترونهای ایجاد شده در آند ، از مدار خارجی گذشته به الکترود مس می‌رسند و در آنجا یونهای مس II را کاسته و آنها را به مس فلزی تبدیل می‌سازند. مسی که بدین ترتیب تولید می‌شود، بر روی الکترود سمت راست می‌نشیند. الکترود مس ، کاتد پیل است که در آنجا الکترونها وارد پیل (یا سلول) می‌شوند و کاهش یا احیا صورت می‌گیرد.

علامت آند و کاتد

چون الکترونها در الکترود روی تولید می‌شوند، این آند به عنوان قطب منفی در نظر گرفته می‌شود. الکترونها در مدار خارجی هر پیل ولتایی که در حال کارکردن است، از قطب منفی به طرف قطب مثبت سیر می‌کنند. بنابراین کاتد که در آنجا الکترونها در واکنش الکترودی مصرف می‌شوند، قطب مثبت است.

جهت حرکت آنیونها و کاتیونها

 

در نخستین نظر ، شگفت آور به نظر می‌رسد که آنیونها یعنی یونهایی که بار منفی دارند، باید به طرف آند که الکترود منفی است، سیر کنند و بر عکس کاتیونها که حامل بار مثبت هستند به طرف کاتد که قطب مثبت است، بروند (باید توجه داشت که در داخل پیل حرکت یونها مدار الکتریکی را کامل می‌کنند). اما بررسی دقیق واکنشهای الکترودی پاسخ این مساله ظاهرا غیر عادی را بدست می‌دهد. در آند ، یونهای روی تولید می‌شوند و الکترونها در فلز ، به جای می‌مانند. از طرف دیگر ، خنثی بودن الکتریکی محلول همواره باید حفظ شود.

بنابراین در محلول پیرامون الکترود باید به همان قدر بار منفی از آنیونها وجود داشته باشد که بار مثبت از کاتیونها وجود دارد. از این رو یونهای SO-24 به طرف آند می‌روند تا اثر یونهای Zn2+ را که تولید می‌شوند خنثی کنند. در همان زمان ، یونهای روی از آند دور می‌شوند و به طرف کاتد می‌روند. در کاتد الکترونها صرف کاهش یونهای 2+Cu و تبدیل آنها به فلز مس می‌شوند. در حالی که یونهای 2+Cu بار خود را تخلیه می‌کنند، یونهای 2+Cu بیشتری به محوطه پیرامون کاتد می‌آیند تا جای یونهای خارج شده را بگیرند. اگر چنین نشود ، یونهای SO2-4 اضافی در اطراف کاتد ایجاد می‌شوند.

نقش دیواره متخلخل

دیواره متخلخل را به این منظور اضافه می‌کنند که از اختلاط مکانیکی محلول نیم پیلها ممانعت به عمل آورد. بدیهی است که اگر یونهای 2+Cu با الکترود فلز روی تماس پیدا کنند، الکترونها به جای آن که از مدار خارجی بگذرند، مستقیما به یونهای 2+Cu منتقل خواهند شد. وقتی که سلول بطور عادی کار می‌کند، انتقال از این مدار کوتاه صورت نمی‌گیرد. زیرا یونهای 2+Cu در جهتی حرکت می‌کنند که از الکترود روی دور شوند.

پتانسیل احیا و نقش آن در تعیین آند و کاتد

در مقایسه پتانسیل احیا دو عنصر ، عنصری که پتانسیل احیای بالاتری دارد، به عنوان کاتد و عنصری که پتانسیل احیای پایین تری دارد، به عنوان آند پیل در نظر گرفته می‌شود. در پیل دانیل نیز ، چون روی پتانسیل احیای پایین تری در مقایسه با فلز مس دارد، به عنوان آند و مس به عنوان کاتد و عنصر احیا شونده بکار رفته است.

چگونگی نمایش آند و کاتد در یک پیل

اگر در پیل دانیل ، محلولهای 1M از ZnSO4 و 1M از CuSO4 بکار رفته باشد، آن پیل را با نمادگذاری زیر نشان می‌دهیم:

(Zn(s)Zn2 + (1M)Cu2 + (1M)Cu(s


که در آن ، خطوط کوتاه عمودی ، حدود فازها را نشان می‌دهند. بنابر قرار داد ، ماده تشکیل دهنده آند را اول و ماده تشکیل دهنده کاتد را در آخر می‌نویسیم و مواد دیگر را به ترتیبی که از طرف آند با آنها برخورد می‌کینم، میان آنها قرار می‌دهیم..

 

آنیون و کاتیون

دید کلی

نیروی پیش برنده یک واکنش یونی ، جاذبه الکتروستاتیکی متقابل یون‌های ناهمنام است. این جاذبه باعث آزاد شدن انرژی شبکه می‌شود. انرژی شبکه، عامل مهمی در تعیین تعداد بار منفی یا مثبتی است که اتم‌ها به هنگام تشکیل یک بلور یونی می‌پذیرند.

نامگذاری ترکیبات یونی

نامگذاری ترکیبات یونی بر قواعدی چند استوار است. ابتدا از کاتیون (یون مثبت) ترکیب نام برده می‌شود و آنیون (یون منفی) پس از آن ذکر می‌شود.

  

کاتیون

بیشتر کاتیونها ، یونهای تک اتمی‌اند که توسط فلزات بوجود می‌آیند. اگر فلز تنها یک نوع کاتیون ایجاد کند، نام یون ، همانند فلز مربوط است. +Na یون سدیم است. یعنی فلز سدیمی که ابتدا بصورت گازی در آمده است و از سدیم یک الکترون با اعمال انرژی یونش گرفته شده است. 2+Mg یون منیزیم است. 3+Al ، یون آلومینیوم است.

برخی از فلزات بیش از یک نوع کاتیون بوجود می‌آورند. در اینگونه موارد ، با نشان دادن تعداد بار کاتیونها در نامشان آنها را متمایز می‌کنیم. بار این نوع کاتیونها بصورت ارقام لاتین بعد از نام فارسی عنصر قرار داده می‌شود. +Cu ، یون مس (I) و 2+Cu ، یون مس (II) است. در روشی قدیمی‌تر برای متمایز کردن دو نوع یون بوجود آمده از یک فلز ، پسوندی به نام فلز افزوده می‌شود. در این روش ، هرگاه نماد فلزی از لاتین مشتق شده باشد، از نام لاتین فلز استفاده می‌شود.

پسوند "- و" برای یون دارای بار مثبت کمتر و پسوند "- یک" برای یون با بار مثبت بیشتر مورد استفاده قرار می‌گیرد. +Cu ، یون کوپرو و 2+Cu یون کوپریک است. +Fe ، یون فرو و 2+Fe یون فریک است.

توجه کنید که در روش بالا تعداد بارها بروشنی بیان نمی‌شود و نیز این روش برای فلزاتی که بیش از دو نوع کاتیون تولید می‌کنند، قابل استفاده نیست.

  

آنیون

آنیونهای تک‌اتمی از اتم فلزات به وجود می‌آیند. نام آنها از طریق حذف بخش آخر نام عنصر و افزودن پسوند "- ید" به باقیمانده به دست می‌آید. -Cl یون کلرید است. 2-O ، یون اکسید است. 3-N یون نیترید است. اما ، تمام آنیونهایی که نامشان به "ید" ختم می‌شود تک اتمی نیستند. بلکه معدودی آنیونهای چند اتمی نیز نامشان با این پسوند ختم می‌شود. مثلا -CN یون سیانید است. -OH یون هیدروکسید است. 2-O2 یون پروکسید است.

آنیونهای چند اتمی بسیاری شناخته شده‌اند. بعنوان مثال 2-O2 یون پراکسید ، Cr2O7-2 یون کرومات ، SO3-2 یون سولفیت و 3-AsO4 یون آرسنات است.

یون چند اتمی

این یون ، یونی است که از چند اتم که با یکدگیر پیوند کووالانسی دارند، بوجود می‌آید. کایتونهای چند اتمی معدودند و دو نوع نمونه متداول عبارت اند از :

  • +NH4 یون آمونیوم و 2+Hg2 یون جیوه (I) یا یون مرکورو.
  • یون 2+Hg2 یون جیوه I نامیده شده است. زیرا می‌توان آن را متشکل از دو یون +Hg )که با یکدیگر پیوند کووالانسی دارند) در نظر گرفت.

نام ترکیبات یونی

نام ترکیبات یونی ، متشکل از نام کاتیون و پس از آن ، نام آنیون (بصورت لغتی جداگانه) است.

  •  Fe2O3: آهن (II) اکسید یا فریک اسید.
  •  PbCO3: سرب (II) کربنات یا پلمبوکربنات.
  •  NH4(2S): آمونیوم سولفید
  •  Mg(NO3)2: منیزیم نیترات
  • Cu(CN)2:  مس (II) سیانید یا کوپریک سیانید.

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره اتم