حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پاورپوینت انواع روشهای توسعه شبکه و ابزار آن به همراه تصویر

اختصاصی از حامی فایل دانلود پاورپوینت انواع روشهای توسعه شبکه و ابزار آن به همراه تصویر دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت انواع روشهای توسعه شبکه و ابزار آن به همراه تصویر


دانلود پاورپوینت انواع روشهای توسعه شبکه و ابزار آن به همراه تصویر

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از محتوی متن پاورپوینت : 

 

تعداد اسلاید : 21 صفحه

انواع روشهای توسعه شبکه و ابزار آن به نام خدا شبکه محلی شبکه شهری شبکه گسترده شبکه نظیر به نظیر شبکه مبتنی بر سرویس دهنده شبکه سرویس دهنده سرویس گیرنده توپولوژی خطی توپولوژی حلقوی توپولوژی ستاره ای توپولوژِی توری توپولوژی ترکیبی 2 نمونه کابل مودم کارت شبکه هاب سوئیچ روتر پل تکرار کننده .

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه آنلاین پاورپوینت کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 



دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


دانلود پاورپوینت انواع روشهای توسعه شبکه و ابزار آن به همراه تصویر

پروژهرشته نرم افزار با عنوان تصویر دیجیتال. doc

اختصاصی از حامی فایل پروژهرشته نرم افزار با عنوان تصویر دیجیتال. doc دانلود با لینک مستقیم و پر سرعت .

پروژهرشته نرم افزار با عنوان تصویر دیجیتال. doc


پروژهرشته نرم افزار با عنوان تصویر دیجیتال. doc

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 130 صفحه

 

چکیده:

در این روش یک الگوریتم اولیه برای تشخیص صورت انسان در تصاویر دیجیتالی به صورت اتوماتیک بیان شده و می تواند به عنوان مقدمه ای برای تحقیقات آتی در زمینه تشخیص صورت در تصاویر باشد. سیستم های زیادی به منظور تشخیص صورت توسط گروههای تحقیقاتی زیادی طراحی و پیشنهاد شده اند. تعدادی از این برنامه ها مانند Rawley , Raluja و Kanade بر مبنای آموزش شبکه های عصبی و محاسبه اندازه فاصله بین مجموعه های آموزشی برای تشخیص صورت می باشد. بقیه بسته های نرم افزاری که در این زمینه وجود دارند، می توانند ویژگی های مربوط به صورت را در تصا ویری تشخیص دهند که در آن ها وجود چهره انسان در جائی از تصویر محرز شده باشد. اما در روشی که در ادامه ارائه می شود تشخیص صورت بر روی عکس های رنگی دلخواه متمرکز شده و با سیستم های نوع اول که بر مبنای ترکیب اطلاعات در مقیاس خاکستری و رنگی می باشند تفاوت دارد.

علاوه بر موارد فوق، این روش نیاز به صرف زمان برای آموزش شبکه های عصبی یا محاسبه اندازه های فاصله بین هر ناحیه احتمالی پوست در تصویر را ندارد. همچنین این سیستم با بسته های نرم افزاری که ویژگی های مربوط به صورت را تشخیص می دهند تفاوت دارند زیرا در این سیستم هدف تشخیص ناحیه احتمالی در هر عکس اختیاری و دلخواه در صورت وجود می باشد، نه آنالیز تصاویری که وجود یک صورت در آن ها از قبل محرز شده اند. این پروسه برمبنای دو گام می باشد؛ گام اول: در تصاویر فیلتر شده نواحی احتمالی شامل پوست انسان مشخص و علامت گذاری می شوند. این فیلتر با استفاده از توابع ریاضی ساده و توابع پردازش تصویر در متلب طراحی شده است و برمبنای فیلتر پوستی که برای The Berkeley-Iowa Naked People Finder طراحی شده می باشد. تغییرات اعمال شده در الگوریتم به منظور دست یابی به نتایج بهتر صورت گرفته شده است. در مرحله دوم نواحی پوستی مشخص شده را جدا نموده و تاریکترین و روشن ترین ناحیه ها از نقشه برداشته می شوند. روی این نواحی تاریک و روشن تست ها ی عملی و تجربی انجام می شود تا تطابق آن ها با نواحی مثل چشم و ابرو و سوراخ بینی و دهان معین شود. در نهایت نواحی که پس از انجام چند مرحله آنالیز حاوی سوراخ می باشند به عنوان نواحی احتمالی برای انجام مراحل فوق از ترکیبی از توابع متلب و برنامه Khoros استفاده می شود. در آخر، سیستم نهائی به صورت اتوماتیک در می آید و نیازی به مداخله کاربر ندارد. مرحله سوم این روش که در این پروژه بیان نشده و باید تکمیل شود شامل بررسی تمایز اندازه های سوراخ ها و فاصله ی آن ها برای دست یابی به سیستم تشخیص صورت قوی تر می باشد.

 

مقدمه:

پردازش تصویر دیجیتال دانش جدیدی است که سابقه آن به پس از اختراع رایانه های دیجیتال باز می گردد. با این حال این علم نوپا در چند دهه اخیر از هر دو جنبه نظری و عملی پیشرفت های چشمگیری داشته است. سرعت این پیشرفت به اندازه ای بوده است که هم اکنون و پس از این مدت نسبتاً کوتاه ، به راحتی می توان رد پای پردازش تصویر دیجیتال را در بسیاری از علوم و صنایع مشاهده نمود. علاقه به روش های پردازش تصویر دیجیتال از دو محدوده کاربردی اصلی نشات می گیرد که آن محدوده ها عبارتند از: بهبود اطلاعات تصویری به منظور تعبیر انسانی و پردازش داده های صحنه برای ادراک ماشینی مستقل.

چند دسته مهم از کاربرد های پردازش تصویر به شرح زیر می باشد [ 1 ]:

الف ) کاربردهای عکاسی مانند ارتقاء ، بازسازی تصاویر قدیمی ، بازسازی تصاویر خراب شده با نویز و بهبود ظاهر تصاویر معمولی.

ب ) کاربرد های پزشکی مانند ارتقاء ویژگی های تصاویر اشعه ایکس ، تولید تصاویر MRI و

CT-scan.

ج ) کاربرد های امنیتی مانند تشخیص حرکت ( در دزد گیر ها ) ، تشخیص اثر انگشت ، تشخیص چهره و تشخیص امضاء.

د ) کاربرد های نظامی مانند تشخیص و رهگیری خودکار اهداف متحرک یا ثابت از هوا یا از زمین.

ه ) کاربرد های سنجش از راه دور مانند ارتقاء و تحلیل تصاویر هوایی و ماهواره ای (برداشته شده از مناطق مختلف جغرافیایی) که در کاربرد های نقشه برداری ، کشاورزی ، هوا شناسی و موارد دیگر مفید هستند.

و ) کاربرد های صنعتی مرتبط با خودکار سازی صنایع مانند تفکیک محصولات مختلف بر اساس شکل یا اندازه ، آشکارسازی نواقص و شکستگی های موجود در محصولات ، تعیین محل اشیاء و اجرای فرایند تولید با استفاده از روبات ها و بینایی ماشینی.

ز ) کاربرد های فشرده سازی تصویر مانند ذخیره سازی ، ارسال تصاویر تلویزیون با کیفیت بالا و ارسال تصاویر متحرک و زنده از روی شبکه اینترنت و یا خط تلفن.

ح ) موارد متفرقه دیگری نیز مانند تصویر برداری از اسناد و ارسال آنها توسط دور نگار و تشخیص خودکار نویسه در ردیف کاربرد های پردازش تصویر قرار دارند.

 

فهرست مطالب:

فصل اول:

مقدمه ای بر پردازش تصویر دیجیتال

مقدمه

مراحل اساسی پردازش تصویر

شکل 1-1: مراحل اساسی پردازش تصویر دیجیتال

یک مدل ساده تصویر

4-1: تشخیص صورت

تشخیص و تعبیر

فصل دوم

بررسی دقیق تر برخی از روش های معرفی شده توسط سایر محققین در زمینه تشخیص صورت

2-1: تشخیص صورت در تصاویر رنگی با استفاده از فیلتر پوست

1-1-2: چکیده

2-1-2: فیلتر پوست

2-1-3: تشخیص صورت در نواحی پوست

2-2: الگوریتم تشخیص صورت بر مبنای مکان یابی ویژگی های صورت

مقدمه

2-2-1: چکیده

2-2-2: الگوریتم تشخیص صورت

2-2-3: جبران سازی نور و تشخیص رنگ و تن پوست

(ج) نواحی پوست تصویر الف؛ (د) واحی پوست تصویر ب.

2-2-4: مکان یابی ویژگی های مربوط به صورت

5-2-2: نتایج

2-3: یک متد آماری برای تشخیص اجسام سه بعدی

مقدمه

2-3-1: چکیده

2-3-2: تشخیص بر مبنای ظاهر

2-3-3: قانون تصمیم آماری

2-3-3-1: احتمال بر اساس نتایج آماری

2-3-3-2: تجزیۀ ظاهر به فضا،فراوانی و جهت

2-3-3-3: نمایش نمونه ها با زیر مجموعۀ ضریب موج

2-3-3-4: فرم نهایی تشخیص دهنده

2-3-4: جمع آوری آمار

2-3-5: کاربرد تشخص دهنده ها

2-3-6: صحت تشخیص صورت با چرخش خارج از محدوده

2-4: تشخیص صورت با استفاده از روش مسافت هاسدورف

مقدمه:

2-4-1: چکیده

2-4-2: تشخیص جسم با روش هاسدورف

2-4-2-2: تشخیص بر پایۀ مدل

2-4-3: توضیح سیستم

2-4-3-1: دوره تشخیص

2-4-3-2: پالایش

2-4-3-3: انتخاب مدل

2-4-4: صحت

2-4-5: نتایج

2-5: مدل ژنتیک بهینه سازی مکان یابی چهره به روش هاسدورف بر پایه مسافت

2-5-1: مقدمه

2-5-2: چکیده

2-5-3: تشخیص صورت با روش هاسدورف بر پایه مسافت

2-5-4: مدل ژنتیک

-5-24-1: کد های مدل

2-5-4-2: توابع تناسب

2-5-4-3: پارامتر های مورد نیاز

2-5-4-4: مقداردهی اولیه

2-5-5: نتایج آزمایشات

2-5-6: نتیجه گیری

فصل سوم:

تشخیص صورت بر مبنای رنگ پوست

3-1: استفاده از رنگ به عنوان ابزار پردازش تصاویر رنگی

3-1-1: مبانی رنگ

 تشخیص پوست

 مدل های رنگ

3-3-1: مدل رنگ RGB

3-3-2: مدل رنگ CMY

3-3-3: مدل رنگ YIQ

3-3-4: مدل رنگ HSI

3-3-5: مدل رنگ YCbCr

3-3-5-1: تبدیلات بین RGB و YCbCr

3-3-6: مدل های رنگ دیگر

3-3-7: نتیجه گیری از فضاهای رنگ

 ساختن مدل برای پوست

فصل چهارم:

شناسایی صورت در یک پایگاه داده اختیاری

4-1: شناسائی صورت

4-1-1: مقدمه

4-1-2: تاریخچه

4-1-3: روش های برجسته

principle component analysis: 1-3-1-4

2-3-1-4 Linear discriminant analysis

-3-1-43: Elastic Bunch Graph Matching

4-1-4: ارزیابی دولت ایالات متحده امریکا

4-1-5: نظر اجمالی به استاندارد ها

:6-1-4 نتیجه گیری

4-2: قرارداد فرت برای الگوریتم شناسایی صورت

4-2-1: مقدمه

4-2-2: چکیده

4-2-3: تست سپتامبر 96 فرت

4-2-4: مدل تحقیق

4-2-5: نتایج تحقیق

4-2-6: نتیجه گیری

فصل پنجم:

روش انجام کار

5-1: مقدمه

5-2: مدل کردن رنگ پوست

5-3: جداسازی پوست

5-4: نواحی پوست

5-4-1: یافتن تعداد سوراخ های یک ناحیه

5-4-2: مرکز حجم

5-4-3: جهت

5-4-4: عرض و ارتفاع ناحیه

از چپ، راست، بالا و پایین تصویر.

5-4-5: نسبت ناحیه

5-4-6: الگوی صورت

5-5: تطبیق الگو

5-6 راهکارهای پیشرفت این پروژه

5-7 نتایج

فهرست منابع

 

فهرست نمودار:

نمودار سه: نتایج پراب FB. (a) الگوریتم ها در سپتامبر 1996 مورد آزمایش قرار گرفته اند. (b) الگوریتم ها در مارس 1997 مورد آزمایش قرار

گرفته اند.

نمودار چهار: نتایج پراب المثنی Ι.. (a) الگوریتم ها در سپتامبر 1996 مورد آزمایش قرار گرفته اند. (b) الگوریتم ها در مارس 1997 مورد

آزمایش قرار گرفته اند.

نمودار پنج: نتایج پراب fc. (a) الگوریتم ها در سپتامبر 1996 مورد آزمایش قرار گرفته اند. (b) الگوریتم ها در مارس 1997 مورد آزمایش قرار

گرفته اند.

نمودار شش: نتایج پراب المثنی. (a) الگوریتم ها در سپتامبر 1996 مورد آزمایش قرار گرفته اند. (b) الگوریتم ها در مارس 1997 مورد

آزمایش قرار گرفته اند.

نمودار هفت: نتایج اجرای الگوریتم ها روی هر دسته از پراب ها.

 

فهرست اشکال:

شکل2-1: تصویر اصلی RGB

شکل2-2: نقشه بافت

شکل2-3: تصویر رنگمایه

شکل2-4: تصویر اشباع

شکل2-5: نقشه پوست

شکل2-6: ادغام نقشه پوست با تصویر خاکستری

شکل 2-7: تصویر مثبت برچسب گذاری شده

شکل2-8: تصویر منفی

شکل 2-9: نتیجه نهایی

شکل2-10: الگوریتم تشخیص صورت بر مبنای مکان یابی ویژگی های صورت

شکل2-11: (الف) تصویر با تن زرد؛ (ب) تصویر جبران سازی شده اثر نور؛

شکل 2-12: پیاده سازی مکان یابی چشم برای دو نمونه

شکل2-13: پیاده سازی مکان یابی دهان برای دو نمونه

شکل2-14: مرز صورت و مثلث دهان- چشم

شکل2-15: نمونه های آموزشی جهت

شکل 2-16: نمونه های آموزشی جهت

جدول 2: تشخیص صورت با چرخش خارج از محدوده

شکل 2-17: نمونه هایی از نتایج

شکل 2-18: ویرایش تصویر

شکل 2-19: گامهای قطعه بندی و موضعی کردن در تشخیص صورت. بالا: دوره تشخیص با مدل صورت؛ پایین: پالایش اولیه با مدل چشم.

شکل 2-20: خطای نسبی؛ (الف): نشان دادن رابطه بین موقعیت انتظاری (Cl و Cr) و مکان تخمینی چشم ها ( ). (ب): نمایش خطای نسبی

شکل 2-21: پروسه پیدا کردن صورت

شکل 2-23: عملگر تقاطع برای مدل دو بعدی

شکل 2-24: نمونه هایی برای مقداردهی تصادفی الگوریتم ژنتیک

شکل 2-25: نمونه هایی برای مقداردهی الگوریتم ژنتیک به روش لبه متوسط

شکل 2-26: نمونه هایی برای مقداردهی الگوریتم ژنتیک به روش دستی

شکل 2-27: مدل حاصله

شکل 3-1: مکعب رنگی RGB ، نقاط در طول قطر اصلی، مقادیر خاکستری از سیاه در مبدأ تا سفید در نقطه (1 , 1 ,1) دارند

شکل 3-2: (الف) مثلث رنگی HSI ، (ب) هرم گونه رنگی HSI

شکل 3-3: مکعب رنگ YCbCr

شکل 4-1: نمونه هایی از شش کلاس در LDA

شکل 4-2: Elastic Bunch Graph Matching

شکل 4-3:مثال هایی از پروسه های مختلف پراب ها. المثنی Ι و f_a در طول یک سال گرفته شده ولی المثنی ΙΙ وf_a حداقل به فاصله یک سال گرفته

شده اند.

شکل 5-1: نقاب عمومی 3×3

شکل5-2: نقاب حاصله

شکل 5-3: توزیع گاوسی

شکل 5-4: (الف): تصویر رنگی اصلی. (ب) تصویر احتمالی پوست

شکل 5-5: حاصله از آستانه گیری

شگل 5-6: نمونه ای از اجرای روش فوق

شکل 5-7: (الف) نواحی قسمت بندی شده. (ب) ناحیه احتمالی صورت

شکل 5-8: نمونه انتخابی

شکل 5-9 )الف) ناحیه احتمالی صورت. (ب) ناحیه بدون سوراخ. (ج)نتیجه ادغام تصویر مقیاس خاکستری با (ب)

شکل 5-10: (الف) الگوی اصلی. (ب) الگوی تغییر سایز یافته

شکل 5-11: (الف) الگوی دوران داده شده. (ب) تصویر حاصل از حذف نواحی اضافی در لبه های (الف)

شکل 5-12: تصویر در مقیاس خاکستری هم سایز با تصویر اصلی شامل الگوی ویرایش یافته

شکل 5-13: نمونه ای از روند کار

 

منابع ومأخذ:

[1]رافائل سی. گونزالس،‌ ریچارد ای. وودز، ترجمه دکتر مرتضی خادمی و مهندس داوود جعفری، پردازش تصویر رقمی، چاپ سوم، موسسه چاپ و انتشارات دانشگاه فردوسی مشهد، بهار 1385

http://www.cs.uiowa.edu/~mfleck/vision-html/naked-skin.html [2]

[3] Kapur , Jay P. , " Face Detection in Color Images " , University of Washington Department of Electrical Engineering , EE499 Capstone Design Project Spring 1997

[4] D. Maio and D. Maltoni, “Real-time face location on grayscale static images,’’ Pattern Recognition, vol.33, no. 9, pp. 1525-1539, Sept. 2000

[5] H. A. Rowley, S. Baluja, and T. Kanade, “Neural Network-Based Face Detection,” IEEE Trans. PAMI, vol. 20, pp. 23-38, Jan. 1998

[6] K. K. Sung and T. Poggio, “Example-Based Learning for View-Based Human Face Detection,” IEEE Trans. PAMI, vol. 20, pp. 39-51, Jan. 1998

[7] H. Schneiderman and T. Kanade, “A Statistical Method for 3D Object Detection Applied to Faces and Cars,” IEEE CVPR, June 2000

[8] M. Abdel-Mottaleb and A. Elgammal, “Face Detection in complex environments from color images,’’ IEEE ICIP, pp. 622-626, Oct. 1999

[9] J.C. Terrillon, M. N. Shirazi, H. Fukamachi, and S. Akamatsu, “Comparative performance of different skin chrominance models and chrominance spaces for the automatic detection of human faces in color images,’’ Proc. IEEE Int’l Conf. on Face and Gesture Recognition, pp. 54-61, 2000

[10] T. Horprasert, Y. Yacoob, and L. S. Davis, “Computing 3-D Head Orientation from a Monocular Image,” Proc. Int’l Conf. Automatic Face and Gesture Recognition, pp. 242-247, Oct. 1996

[11] F. Smeraldi, O. Carmona, and J. Bign, “Saccadic search with Gabor features applied to eye detection and real-time head tracking,’’ Image and Vision Computing, vol. 18, no. 4, pp. 323-329, 2000.

[12] W. Huang, Q. Sun, C.-P. Lam, and J.-K. Wu, “A Robust Approach to Face and Eyes Detection from Images with Cluttered Background,’’ ICPR, vol. 1 , pp. 110-114, Aug. 1998

[13] P. T. Jackway and M. Deriche, “Scale-space properties of the multiscale morphological dilation-erosion,’’ IEEE Trans. PAMI, vol. 18, pp. 38-51, Jan. 1996

[14] C. Kotropoulos, A. Tefas, and I. Pitas, “Frontal face authentication using morphological elastic graph matching,’’ IEEE Trans. Image Processing, vol. 9, pp. 555-560, April 2000.

[15] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Managing personal photo collection based on human faces,’’ Tech. Report, Michigan State Univ., Jan. 2001

[16] Heinrich-Hertz-Institut (HHI) http://www.hhi.de/

[17] The Champion dataset http://www.libfind.unl.edu/alumni/events/champions/

[18] Hsu,Rein-Lien, Abdel-Mottaleb, Mohamed , Jain , Anil K." FACE DETECTION IN COLOR IMAGES" , Dept. of Computer Science & Engineering, Michigan State University, MI 48824 * Philips Research, 345 Scarborough Rd., Briarcliff Manor, NY 10510

Email: {hsureinl, jain}@cse.msu.edu, mohamed.abdel-mottaleb@philips.com

[19] P.C. Cosman, R.M. Gray, M. Vetterli. “Vector Quantization of Image Subbands: A Survey.” IEEE Trans. on Image Processing. 5:2. pp. 202-225. Feb., 1996

[20] 4]B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press. 1996

[21] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995

[22] Y. Freund, R. E. Shapire. “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.” Journal of Computer and System Sciences. 55:1, pp. 119-139. 1997

[23] R. E. Shapire, Y. Singer. “Improving Boosting Algorithms Using Confidence-rated Predictions.” Machine Learning 37:3, pp. 297-336. December, 1999

[24] H. Schneiderman and T. Kanade. “Probabilistic Modeling of Local Appearance and Spatial Relationships for Object Recognition.” CVPR ‘98. pp. 45-51

[25] K-K Sung, T. Poggio. “Example-based Learning of View-Based Human Face Detection.” ACCV ‘95 and AI Memo #1521, 1572, MIT

[26] H. Rowley, S. Baluja, T. Kanade. “Neural Network-Based Face Detection.” PAMI 20(1), January, 1998

[27] Schneiderman , Henry , Kanade , Takeo , " A Statistical Method for 3D Object Detection Applied to Faces and Cars ", Robotics Institute , Carnegie Mellon University , Pittsburgh , PA 15213

[28] J. Terrillon, M. David, and S. Akamatsu. Automatic detection of human faces in natural scene images by use of a skin color model and of invariant moments. In Proc. of the Third International Conference on Automatic Face and Gesture Recognition, pages 112–117, Nara, Japan, 1998

[29] H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 203–207, San Francisco, CA, 1996

[30] M.P. Dubuisson and A.K. Jain. A modified Hausdorff distance for object matching. In ICPR94, pages A:566–568, Jerusalem, Israel, 1994

[31] W. Rucklidge. Efficient Visual Recognition Using the Hausdorff Distance, volume 1173 of Lecture notes in computer science. Springer, 1996

[32] Jesorsky , Oliver , Kirchberg , Klaus J. , Frischholz , Robert W. , " Robust Face Detection Using the Hausdorff Distance " , BioID AG , Berlin , Germany , In proc.Third International Conference on Audio- and video-based Biometric Person Authentication, Springer ,Lecture Notes in Computer Science , LNCS-2091, pp. 90-95 ,Halmstad, Sweden, 6-8 June 2001

[33] Oliver Jesorsky, Klaus J. Kirchberg, and Robert W. Frischholz. Robust Face Detection Using the Hausdor® Distance. In Josef Bigun and Fabrizio Smeraldi, editors, Audio- and Video-Based Person Authentication - AVBPA 2001, volume 2091 of Lecture Notes in Computer Science, pages 90{95, Halmstad, Sweden, 2001. Springer

[34] W. Rucklidge. E±cient Visual Recognition Using the Hausdor® Distance, volume 1173 of Lecture notes in computer science. Springer, 1996

[35] M.P. Dubuisson and A.K. Jain. A modi¯ed Hausdor® distance for object matching. In ICPR94, pages A:566{568, Jerusalem, Israel, 1994

[36] John H. Holland. Adaption in Natural and Arti¯cial Systems. The University of Michigan Press, Ann Arbor, 1975

[37] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, 1989

[38] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSDB: The

extended M2VTS database. In Second International Conference on Audio and Video-based Biometric Person Authentication, pages 72{77, March 1999

[39] BioID face database. http://www.bioid.com/research/index.html

[40] F. Smeraldi, N. Capdevielle, and J. Bigun. Facial features detection by saccadic exploration of the Gabor decomposition and Support Vector Machines. In Proceedings of the 11th Scandinavian Conference on Image Analysis - SCIA 99, Kangerlussuaq, Greenland, volume I, pages 39{44, June 1999

[41] Kirchberg , Klaus J. , Jesorsky , Oliver , Frischholz , Robert W. , BioID AG, Germany, in Proc. International ECCV 2002 Workshop on Biometric Authentication, Springer, Lecture Notes in Computer Science ,LNCS-2359, pp. 103-11, Copenhagen ,Denmark, June 2002

[42] Belongie , S, Carson, C, Greenspan, H, and Malik, J, "Color- and texture- based image segmentation using EM and its application to content-based image retrieval, " Proc. 6th IEEE Int. Conf. Computer Vision , Gan. 1998

[43] Vezhnevets, Vladimir, Sazonov, Vassili, Andreeva, Alla, " A Survey on Pixel-Based Skin Color detection Techniques" , submitted, 2003

[44] Zarit, B. D., Super, B. J., and Quek, F. K. H., "Comparison of five color models in skin pixel classification " , In ICCV,99 Int'l Workshop on Recognition , Analysis and Tracking of Faces and Gestures in Real-time Systems, 58-63, 1999

[45] Terrilon, J. C., Shirazi, M. N., Fukamachi, H., and Akamatsu, S., "Comparative performance of different skin chrominance model and chrominance spaces for the automatic detection of human faces in color images", In Proc. Of the International Conference on Face and Gesture Recognition, 54-61, 2000

[46] Brand, J., and Mason, J., "A comparative assessment of three approaches to pixellevel human skin-detection", In Proc. Of the International Conference on Pattern Recognition, vol. 1, 1056-1059, 2000

[47] Lee, J. Y., and Yoo, S. I. , "An elliptical boundary model for skin color detection", In Proc. Of the 2002 International Conference on Imaging Science Systems, and Technology ,2002

[48] Shin, M.C, Chang, K.I, and Tsap, L.V, "Does Colorspace Transformation Make Any Difference on Skin Detection?" , IEEE Workshop on Application of Computer Vision , Orlando, FL, Dec 2002

[49] Yang, J, and Waibel, A, "Tracking human faces in real-time ," Proc. IEEE Workshop on Application of Computer Vision,1996

[50] Jones, M. J., and Rehg, J. M, "Statistical color models with application to skin detection " , In Proc. Submitted, vol. 1, 274-280, 2000

[51] Albiol, A., Torres, L., Bouman, C.A., and Delp, E. J. , " A simple and efficient face detection algorithm for video database application," on Proceedings of the IEEE International Conference on Image Processing, Vacouver, Canada, vol. 2, pp. 239-242, September 2000

[52] Wang, H. and Chang, S-F., " A highly efficient system for automatic face region detection in mpeg video, "IEEE Transaction on circuits and system for video technology , vol. 7, no. 4, pp. 615-628, August 1997

[53] Hsu, R.L, Abdel-Mottaleb, N., and Jain, A.K, " Face Detection in Color Images," IEEE Trans. On Pattern Analysis and Machine Intelligence Vol. 24, No. 5, pp. 696-706, 2002

[54] Poynton, C.A. Frequently asked questions about colour. In ftp://www.inforamp.net/pub/users/poynton/doc/colour/ColorFAQ.ps.gz. 1995

[55] Fritsch, J, Lang, S, Kleinehagenbrock. M, Fink, G. A, and Sagerer, G," Improving Adaptive Skin Color Segmentation by Incorporation Results from Face Detection", Submitted, 2003

[56] Phung, S. L., Bouzerdoum, A., and Chai, D, "A novel skin color model in ycbcr color space and its application to human face detection" , in IEEE International Conference on Image Processing (ICIP, 2002), vol. 1, 289-292, 2002

[57] Menser, B., and Wien, M., "Segmentation and tracking of facial region in color image sequences", In Proc. SPIE Visual Communication and Image Processing, 731-740, 2000

[58] Ahlberg, J., "A system for face localization and facial feature extraction" , Tech. Rep. LiTH-ISY-R-2172, Linkoping University, 1999.

[59] Chai, D., and Bouzerdoum, A, "A Bayesian approach to skin color classification in ycbcr color space ", In proceedings IEEE Region Ten Conference (TENCON,2000), vol. 2, 421-424, 2000

[60] www.jdl.ac.an/peal/image/grey-image

[61] Saber, E. and Tekalp, A.M. , "Frontal-view Face Detection and Facial Feature Extraction using Color " , shape and Symmetry Based Cost Function" Pattern Recog Letters , vol. 19, no. 8, pp. 669-680, 1998

[62] Marques, F., and Vilaplana, V, " A morphological approach for segmentation and tracking of human faces" , In International Conference on Pattern Recognition (ICPR,00), Vol. 1, 5064-5068, 2000

[63] Brown, D., Craw, I., and Lewthwaite, J., " A som based approach to skin detection with application in real time system", In Proc. Of the British Machine Vision Conference , 2001

[64] Alboil, A., Torres, L., and Delp, E. J. " Optimum color space for skin detection", In Proceedings of the International Conference on Image Processing, vol. 1, 122-124, 2001

[65] Yang, M.,and Ahuja, N., " Gaussian mixture model for human skin color and its application in image and video database ", In Proc. Of the SPIE: Conf. on Storage and Retrieval for image and video Databases (SPIE 99), vol. 3656, 458-466, 1999

[66] Goldstein, A. J., Harmon, L.D., and Lesk, A. B., "Identification of Human Faces," Proc. IEEE, May 1971, vol. 59, No. 5, 748-760

[67] Sirovich, L., and Kirby , M., " A Low-Dimensional Procedure for the characterization of Human Faces," J. Optical Soc. Am. A, 1987, Vol. 4, No. 3, 519-524

[68] Turk, M. A., and Pentland, A. P., " Face Recognition Using Eigenfaces," Proc. IEEE, 1991, 586-591

[69] Bolme, D., Beveridge, R., Teixeria, M., and Draper, B., " The CSU Face Identification Evaluation System: Its Purpose , Feature and Structure," International Conference on Vision Systems, Graz, Austria, April 1-3, 2003. (Springer-Verlag) 304-311

[70] "Eigenfaces Recognition"

http://et.wcu.edu/aids/BioWebPages/eigenfaces.html.

[71] Plataniotis, J. Lu, K. N., and Venetsanopoulos, A. N., " Regularized Discriminant Analysis for the Small Samole Size Problem in Face Recognition, " Pattern Recognition Letters, December 2003, Vol. 24, Issue 16: 3079-3087

[72] Phillips, P. J., Moon, H., Risvi, S. A., and Raus

دانلود با لینک مستقیم


پروژهرشته نرم افزار با عنوان تصویر دیجیتال. doc

پاورپوینت درباره تصاویر رویایی و آرزویی

اختصاصی از حامی فایل پاورپوینت درباره تصاویر رویایی و آرزویی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت درباره تصاویر رویایی و آرزویی


پاورپوینت درباره تصاویر رویایی و آرزویی

فرمت فایل :powerpoint (لینک دانلود پایین صفحه) تعداد صفحات 14  صفحه

 

و امیدوارم اگر جوان هستی ،

 

             خیلی به تعجیل ، رسیده نشوی......

 

                     و اگر

و امیدوارم اگر جوان هستی ،

 

             خیلی به تعجیل ، رسیده نشوی......

 

                     و اگر رسیده ای ، به جوان نمائی اصرار نورزی ،

 

                                               و اگر پیری ،تسلیم نا امیدی نشوی...........

 

چرا که هر سنی خوشی و ناخوشی خودش را دارد و لازم است

 

                                                                         بگذاریم در ما جریان یابد.

 

اگر همه اینها که گفتم برایت فراهم شد ،

دیگر چیزی ندارم برایت آرزو کنم ..............

رسیده ای ، به جوان نمائی اصرار نورزی ،

 

                                               و اگر پیری ،تسلیم نا امیدی نشوی...........

 

چرا که هر سنی خوشی و ناخوشی خودش را دارد و لازم است

 

                                                                         بگذاریم در ما جریان یابد.

 


دانلود با لینک مستقیم


پاورپوینت درباره تصاویر رویایی و آرزویی

پاورپوینت گرافیک رایانه ای کم کردن حجم تصویر 21 اسلاید

اختصاصی از حامی فایل پاورپوینت گرافیک رایانه ای کم کردن حجم تصویر 21 اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت گرافیک رایانه ای کم کردن حجم تصویر 21 اسلاید


پاورپوینت گرافیک رایانه ای کم کردن حجم تصویر 21 اسلاید

 

دسته بندی : پاورپوینت 

نوع فایل:  ppt _ pptx

( قابلیت ویرایش )

 


 قسمتی از اسلاید متن پاورپوینت : 

 

تعداد اسلاید : 21 صفحه

گرافیک رایانه ای :کم کردن حجم تصویر سخت افزار کارت گرافیک کارت گرافیک   کارت گرافیک در کامپیوتر شخصی دارای جایگاهی خاص است .
کارت های فوق اطلاعات دیجیتال تولید شده توسط کامپیوتر را اخذ و آنها را بگونه ای تبدیل می نمایند که برای انسان قابل مشاهده باشند.
در اغلب کامپیوترها ، کارت های گرافیک اطلاعات دیجیتال را برای نمایش توسط نمایشگر ، به اطلاعات آنالوگ تبدیل می نمایند.
در کامپیوترهای Laptop اطلاعات، همچنان دیجیتال باقی خواهند ماند چون کامپیوترهای فوق اطلاعات را بصورت دیجیتال نمایش می دهند.
اگر از قاصله بسیار نزدیک به صفحه نمایشگر یک کامپیوتر شخصی نگاه کنید ، مشاهده خواهید کرد که تمام چیزهائی که بر روی نمایشگر نشان داده می شود از "نقاط" تشکیل شده اند .
نقاط فوق " پیکسل " نامیده می شوند.
هر پیکسل دارای یک رنگ است .
در برخی نمایشگرها ( مثلا" صفحه نمایشگر استفاده شده در کامپیوترهای اولیه مکینتاش ) هر پکسل صرفا" دارای دو رنگ بود: سفید و سیاه .
امروزه در برخی از صفحات نمایشگر ، هر پیکسل می تواند دارای 256 رنگ باشد سه بخش اساسی کارت گرافیک حافظه .
اولین چیزی که یک کارت گرافیک به آن نیاز دارد ، حافظه است .
حافظه رنگ مربوط به هر پیکسل را در خود نگاهداری می نماید.
در ساده ترین حالت ( هر پیکسل سیاه و سفید باشد ) به یک بیت برای ذخیره سازی رنگ هر پیکسل نیاز خواهد بود.
با توجه به اینکه  هر بایت شامل هشت بیت است ، نیاز به هشتاد بایت (حاصل تقسیم 640 بر 8 ) برای ذخیره سازی رنگ مربوط به پیکسل های موجود در یک سطر بر روی صفحه نمایشگر  و 38400 بایت ( حاصلضرب 480 در 80 ) حافظه به منظور نگهداری تمام پیکسل های قابل مشاهده بر روی صفحه ، خواهد بود .
اینترفیس کامپیوتر .
دومین چیزی که یک کارت گرافیک به آن نیاز دارد ، روشی  به منظور تغییر محتویات حافظه کارت گرافیک است .
امکان فوق با اتصال کارت گرافیک به گذرگاه مربوطه بر روی برد اصلی تحقق پیدا خواهد کرد.
کامپیوتر قادر به ارسال سیگنال از طریق گذرگاه مربوطه برای تغییر محتویات حافظه خواهد بود.
اینترفیس ویدئو .
سومین چیزی که یک کارت گرافیک به آن نیاز دارد ، روشی به منظور تولید سیگنال برای مانیتور است .
کارت گرافیک می بایست سیگنال های رنگی را تولید تا باعث حرکت اشعه  در CRT گردد.
عناصر روی کارت گرافیک یک کارت گرافیک دارای عناصر متفاوتی است : پردازنده گرافیک .
پردازنده گرافیک بمنزله مغز یک کارت گرافیک است .
پردازنده فوق می تواند یکی از سه حالت پیکربندی زیر را داشته باشد : حافظه .
نوع حافظه استفاده شده  بر روی کارت های گرافیک متغیر است .
متداولترین نوع ، از پیکربندی dual-ported استفاده می نماید.
در کارت های  فوق امکان نوشتن در یک بخش حافظه و امکان خواندن از بخش دیگر حافظه بصورت همزمان امکان پذیر خواهد بود.
بدین ترتیب مدت زمان لازم برای بازخوانی / بازنویسی یک تصویر کاهش خواهد یافت .
Graphic BIOS .
کارت های گرافیک دارای یک تراشه کوچک BIOS می باشند.
اطلاعات موجود در تراشه فوق به سایر عناصر کارت نحوه انجام عملیات (مرتبط به یکدیگر) را

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  توجه فرمایید.

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه کمک به سیستم آموزشی و رفاه دانشجویان و علم آموزان میهن عزیزمان میباشد. 



دانلود فایل  پرداخت آنلاین 


دانلود با لینک مستقیم


پاورپوینت گرافیک رایانه ای کم کردن حجم تصویر 21 اسلاید

تحقیق درمورد روش جدید برای لب‌خوانی با استفاده از پردازش تصویر 13 ص

اختصاصی از حامی فایل تحقیق درمورد روش جدید برای لب‌خوانی با استفاده از پردازش تصویر 13 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 16

 

روش جدید برای لب‌خوانی با استفاده از پردازش تصویر

وحیده نیکفرجام هفت‌آسیا

گروه کامپیوتر- دانشگاه آزاد اسلامی مشهد

Vahideh_nikfarjam@yahoo.com

چکیده :

بازشناسی تصویری گفتار به عنوان فرآیندی برای کمک به افرادی که دچار آسیب در سیستم صوتی شده‌اند، در سالهای اخیر مورد توجه محققین قرار گرفته‌ است. در این مقاله سعی در این بوده که سه روش برای استخراج ویژگی شکل لب ارائه شود : استخراج کانتور لب ، قطعه‌بندیWatershed ، پارامترهای پویانمایی چهره . سپس برای شناسایی گفتار از روی حرکات لب از الگوریتم HMM و شبکه‌های عصبی پرسپترون دولایه با ساختاری ساده استفاده شده است.

واژه‌های کلیدی : بازشناسی تصویری گفتار ،استخراج کانتور لب ، قطعه‌بندی Watershed ، پویانمایی چهره ، ردیابی علائم .

1- مقدمه :

سامانه‌ی لب‌خوانی رایانه‌ای به معلولینی کمک می کند که دچار آسیب در سیستم صوتی بوده و قادر به برقراری ارتباط با دیگران نیستند. این افراد معمولا توانایی انجام صحیح حرکات لب به شکلی که برای تکلم لازم است را داشته و در حالت ایده‌آل می‌توان با انجام لب‌خوانی به مقصود آنها پی برد. این نرم‌افزار به معلولینی که از صندلی چرخدار استفاده می‌کنند و فقط توانایی انجام صحیح حرکات لبشان را دارند کمک می‌کند؛ بدین ترتیب که با کمک دوربین فیلمبرداری حرکات لب آنها ثبت می‌شود و پس از آنالیز ، فرامین لازم به ویلچر داده می‌شود.

از جمله کاربرد های این سامانه می‌توان به تشخیص فرامین ناتوانان گفتاری ،تشخیص برخی کلمات خاص، مکمل بازشناسی گفتار صوتی و همچنین کاربرد‌های نظامی و اطلاعاتی ذکر کرد .در کاربرد حفاظتی ، این سامانه می‌تواند با بهره‌گیری از حرکات لب و بدون ثبت سیگنال صوتی ،کلمات خاصی را شناسایی و تصویر گوینده‌ی آن را در مراکز عمومی و محل‌های تردد ثبت کند.

فرآیند بازشناسی تصویری گفتار شامل دو مرحله‌ی استخراج ویژگی از دنباله تصاویر لب و طبقه‌بندی ویژگی‌های بدست آمده است. ویژگی گفتاری تصویر حرکات لب معلولین که دارای رنگ پوست و ظاهر متفاوتی هستند ، به کمک طراحی یک الگوریتم جدید استخراج شده و در مرحله‌ی بعد با استفاده از الگوریتم مدل مخفی مارکوف ، حرکات و گفتار تصویری تشخیص داده می‌شود . بهره‌گیری از اطلاعات تصویری از شکل‌های لب و حرکات آن ، دقت و اطمینان سیستم‌های تشخیص اتوماتیک گفتار صوتی را ـ خصوصا در محیط‌های نویزی ـ بطور قابل توجهی بهبود می بخشد .

آزمایش این نرم‌فزار بر روی مجموعه‌ی دادگان جمع‌آوری شده ،شامل 20 نفر زن و مردِ 20 تا50 سال صورت گرفته و روی 6 واژه گفتاری 1،2،3،4،5،6 با 91درصد موفقیت ، بازشناسی گفتار انجام شده است . این پژوهش‌ها در مراحل تکمیلی می توانند با افزایش تعداد کلماتِ قابل شناسایی ، محدوده‌ی تشخیص را هر چه بیشتر افزایش دهند .

2- استخراج کانتورلب

به منظوراستخراج ویژگیهای تصویری مربوط به تولید گفتار،استخراج دقیق شکل لب حیاتی می باشد.استفاده ازرویکردهای مبتنی برلبه برای استخراج لب دارای مشکلات فراوانی می باشد؛ زیرانگاشتهای بدست آمده براساس ویژگی لبه معمولأ دارای نویزواشتباهات فراوانی می باشد. به علاوه لبه هااغلب درمرزلب مفقود بوده یاازنظردامنه خیلی ضعیف هستند.باتوجه به این مشکلات، رویکرد استخراج کانتورلب مابه آشکارسازی لبه هادرلب استناد نکرده است، بلکه هدف ماتقسیم بندی تصاویرلب داده شده به ناحیه لب وغیرلب براساس شدت روشنایی ورنگ پیکسلهامی باشد.دراین روش،فرض نمی شود که لب دارای یک رنگ خاص باشد بلکه جستجو بر اساس تفاوت شدت روشنایی ورنگ بین نواحی لب وغیرلب صورت می گیرد.درادامه درابتدا مدل پیشنهادی باجزئیات شرح داده می شود.سپس تابع هزینه برای پیداکردن بهینه مرزبین ناحیه لب وغیرلب ولگوریتم بهینه سازی پارامترهای مدل توضیح داده می شود.

3-2- مدل لب

ازمدلهای انعطاف پذیرهندسی برای مدل کردن شکل لب استفاده شده است .مدل هندسی به شکل لب اجازه می دهد که بوسیله یک مجموعه کوچکی ازپارامترهاباتفسیرفیزیکی توصیف شود. مدل هندسی لب درشکل (1) نشان داده شده است وبامعادلات(1) و(2) توصیف می شود:

(1) و (2)

تفسیرفیزیکی پارامترهادرشکل نشان داده شده است.پارامترs انحراف شکل لب رانشان می دهد. پارمترs انحراف منحنی ازحالت چهارگوش راتوصیف می کند.s به توان دورسیده وبایک جمع شده تاهمیشه مثبت باشد.همچنین پارامترs اجازه می دهد که مدل لب برروی تصاویرلب بادرجه متفاوت خمیدگی منطبق شود.اگرچه لب گوینده وحرکات لب به طورکلی متقارن نمی باشد اما انحراف ازحالت متقارن بودن معمولأ دارای اهمیت نمی باشد.

 

شکل1-مدل لب هندسی

2-2- فرمول بندی تابع هزینه

برای بدست آوردن یک مدل دقیق،تابع هزینه برای تعیین پارامترهای مدل به طریقه ای که پیکسلهای دارای ناحیه لب دارای احتمال پایین باشند،تعریف می شود وفرض می شود که ناحیه لب وخارج لب هم پوشانی نداشته باشند.مرزاین ناحیه زمانی بدست می آید که این تابع هزینه مینیمم شود.تابع هزینه بصورت (3) تعریف می شود:

(3)

که ) B) 1R و) B)R 2 به ترتیب ناحیه لب وغیرلب می باشند و Prob1 (m,n) احتمال اینکه پیکسل درمکان (m,n) ،پیکسل غیرلب باشد رامشخص می کند. مرز بهینه B با مینیم سازی C(B)به طریقه‌ای که R1(B) شامل پیکسلهایی با Prob1(m,n) بالا و R2(B) شامل پیکسلهایی با Prob2( m,n) بالا باشد،مشخص می شود.با لگاریتم گرفتن ازمعادله بالا وساده سازی رابطه (4) بدست می آید:

(4)

که

(5)

ازآنجاکه درمعادلات(3)و(4)،m وn گسسته هستند بنابراین مرزB نیزگسسته بدست می آید. اما این موضوع برای مامطلوب نیست زیرامایک مرزپیوسته نیازداریم.بنابراین برای حل این مشکل معادله (4) رادرحوزه پیوسته بسط می دهیم.درابتداm وn به x وy پیوسته بسط داده می شود. اکنون مرزB پیوسته شده است ومی تواند هرشکل دلخواهی رافرض کند.سپس ،ما داریم:

(6)


دانلود با لینک مستقیم


تحقیق درمورد روش جدید برای لب‌خوانی با استفاده از پردازش تصویر 13 ص