حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق و بررسی در مورد متالوژی

اختصاصی از حامی فایل تحقیق و بررسی در مورد متالوژی دانلود با لینک مستقیم و پر سرعت .

تحقیق و بررسی در مورد متالوژی


تحقیق و بررسی در مورد متالوژی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه

 34

برخی از فهرست مطالب

متالورژی، علم و تکنولوژی استفاده از فلزات است. متالورژی، به عنوان یک فن از زمانهای قدیم وجود داشته است. انسانهای گذشته بسیاری از فلزات موجود در طبیعت را می شناختند و به کار می بردند. 3500 سال قبل از میلاد از طلا برای ساختن زیورآلات، بشقاب و ظروف استفاده میشده است. فن گدازش، پالایش و شکل دادن فلزات توسط مصریان و چینی ها بسیار تکامل یافت. مصریان قدیم می دانستند چگونه آهن را از سنگ آهن جدا کنند و می دانستند که فولاد سختی پذیر است. اما استفاده از آهن تا سال 1000 قبل از میلاد رایج نشده بود. استفاده از آهن نزد مردم عهد باستان متداول نبود و آنها استفاده از طلا، نقره و مس و برنج را ترجیح می دادند.

عموما در قرون وسطی علم کار بر روی فلزات مستقیما از استاد به شاگرد منتقل می شد و در نتیجه بسیاری از فرآیندها با خرافات می آمیخت. در مورد فرآیندهای متالورزیکی بسیار کم نوشته شده بود تا اینکه برنیگوچیو کتاب پیوتکنیا را در سال 1540 و به دنبال آن کتاب دِرِ متالورژیکا را در سال 1556 منتشر کرد. طی سال های متمادی توسط مردمی که در تقلید جنس و ساتار فولاد دمشق می کوشیدند، اطلاعات بسیاری به علم افزوده شد.

تا آغاز آخرین ربع قرن نوزدهم، اغلب تحقیقات در مورد ساختار فلز با چشم غیرمسلح و به طور سطحی صورت می گرفت. علم ساختار فلزها تقریبا وجود نداشت. در این میان، نیاز به وجود افرادی که سابقه ی علمی انها بیشتر از سابقه علمی و تجربی شان بود، احساس می شد.

بعدها در سال 1922 با کشف روشهای پراش اشعه X و مکانیک موجی، آگاهی های بیشتری درباره ی ساختار و خواص فلزها حاصل شد.

متالورژی حقیقتاً علم مستقلی نیست، زیرا بسیاری از مفاهیم اساسی آن از فییک، شیمی و بلورشناسی مشتق می شود. متخصصان متالورژی به طور فزآینده ای در تکنولوؤی جدید اهمیت پیدا کرده اند. سال ها پیش بخش عمده ی قطعات فولادی از فولاد کم کربن ارزان قیمت تهیه می شد که به سهولت ماشینکاری و ساخته می شد. عملیات گرمایی به طور عمده ای برای ابزار به کار برده می شد. طراحان قادر نبودند غیریکنواختی ساختاری، عیوب سطحی و غیره را به حساب بیاورند و کار درست آن بود که ضریب ایمنی بزرگ استفاده کنند. در نتیجه، ماشینها بسیار سنگین تر از حد لازم بودند و وزن زیاد نشانه ای از مرغوبیت محسوب مس شد. این وضع تا حدودی تا سالهای اخیر نیز اثر خود را حفظ کرده بود، اما با هدایت صنایع هواپیمایی و خودروسازی کم کم برطرف می شود. این صنایع بر اهمیت نسبت استحکام به وزن در طراحی خوب تأکید می کردند و این تأکید ، به ایجاد آلیاژهای جدید سبک و پراستحکام منجر شد]1[.

 

 

   

 

 


دسته بندی رشته های متالورژی

 

متالورژی استخراجی یا فرآیندی که علم به دست آوردن فلز از کانه است و معدن کاری، تغلیظ استخراج و پالایش فلزها و آلیاژها را در برمی گیرد؛

متالورژی فیزیکی؛ علمی که با مشخصه های فیزیکی و مکانیکی فلزها و آلیاژها سر و کار دارد. در این رشته خواص فلزها و آلیاژها، که 3 متغیر زیر بر آنها اثر می گذارند، بررسی می شود:

الف. ترکیب شیمیایی– اجزای شیمیایی آلیاژ؛

ب. عملیات مکانیکی– هر عملیاتی که سبب تغییر شکل فلز می شود مانند نورد(Rolling)، کشش (Drawing)، شکل دادن یا ماشینکاری؛

ج. عملیات گرمایی – اثر دما و آهنگ گرم یا سردکردن.

 

 

 


 

مفاهیم اساسی در شکل دهی فلزات

 

هدف اصلی از عملیات شکل دهی فلز، ایجاد تغییر شکل مطلوب است. در این راستا، برای رسیدن به تغییر شکل مطلوب و همراه با خواص مورد نظر ما، باید دو نکته ی مهم مورد توجه قرار گیرند:

 

  • نیروهای لازم برای شکل دهی فلزات؛
  • خواص لازم برای شکل دهی ماده ای که مورد تغییر شکل قرار می گیرد.

 

همان طور که می دانیم، خواص ماده، بر فرآیند شکل دهی تأثیر می گذارد و بهینه سازی آن برای تغییر شکل حائز اهمیت است. اگرچه موضوعاتی چون سایش، انتقال حرارت و طراحی مکانیکی، دارای اهمیت هستند، اما در اینجا، رابطه متقابل بین ابزار و فلز در حین تغییر شکل پلاستیک و همچنین روابط متقابل بین فرآیند تغییر شکل (در اینجا نورد) و فلز مورد نظر اهمیت بیشتری دارد.

هنگامی که ماده ای تحت تنشی کمتر از حد کشسان قرار گیرد، تغییر شکل یا کرنش حاصل، گذرا خواهد بود و با حذف تنش قطعه به تدریج ابعاد اولیه ی خود را باز می یابد، اما با واردکردن تنش بیش از حد کشسان، ماده تغییر شکل مومسان یا دائمی می دهد و قطعه به شکل اولیه باز نمی گردد، مگر با صرف نیرو.

شاید شکل پذیری فلز، برجسته ترین مشخصه ی آن در مقایسه با دیگر مواد باشد. کلیه عملیات شکل دهی همچون پرسکاری، ورق کشی، نورد، آهنگری، کشش و اکستروژن مستلزم تغییر شکل مومسان اند. عملیات مختلف ماشینکاری نظیر تراشکاری، برشکاری و سوراخکاری نیز با تغییر شکل مومسان همراه است.

رفتار فلز تحت تغییر شکل مومسان و مکانیسمی که توسط آن این تغییرات روی میدهد، در تکمیل عملیات فلزکاری اهمیت اساسی دارد.

با بررسی رفتار یک تک بلور تنش یافته، اطلاعات زیادی در مورد مکانیسم تغییر شکل به دست می آید که می توان آن را در مورد مواد چندبلوری نعمیم داد. تغییر شکل مومسان با لغزش، دوقلویی شدن یا ترکیبی از این دو روش انجام می شود.

 

   

 

 


مکانیزم های تغییر شکل

 

  • مکانیزم لغزش در تغییر شکل

 

دو بخش بلور در دو طرف یک صفحه ی لغزش در جهات مخالف هم حرکت می کنند و با رسیدن به حالتی که اتمها تقریبا در حالت موازنه اند، توقف می کنند، به طوری که تغییر جهت گیری شبکه بسیار اندک است. بنابراین شکل خارجی بلور بدون تخریب آن تغییر می کند. بررسی با روشهای حساس پرتو X نشان می دهد که بعد از تغییر، مقداری خمش یا چرخش در صفحه های شبکه پدید آمده است و اتمها کاملا در موقعیت عادی خود قرار ندارند.

 

(الف)              (ب)                (ج)

شکل 1 : (الف) لغزش هنگام کشش قبل از کرنش؛ (ب) با انتهای مقید شده در هنگام کرنش؛ (ج) صفحه و امتداد لغزش در شبکه fcc؛

فرض منطقی در این مورد این است که اتمها متوالیاً می لغزند، یعنی حرکت از یک یا چند نقطه در صفحه ی لغزش شروع و سپس در بقیه ی صفحه منتشر می شود.

نا به جایی ها در عرض صفحه ی لغزش حرکت می کنند و وقتی به سطح بیرونی می رسد، یک پله به جا می گذارد. هر وقت نابجایی در صفحه لغزش حرکت می کند، بلور به اندازه ی یک فضای اتمی حرکت می کند. چون بعد از عبور نابه جایی اتمها کاملاً در محل معمول خود قرار نمی گیرند، حرکت بعدی نابجایی در همان صفحه ی لغزش با مقاومت بیشتری مواجه می شود تا نابه جایی را در ساختار بلور قفل کند و حرکت متوقف شود. ادامه ی تغیی شکل نیاز به حرکت در صفحه ی لغزش دیگری دارد.

به ترکیب یک صفحه و یک جهت لغزش ، سیستم لغزش گفته می شود. امتداد لغزش، همواره امتدادی است که بیشترین انباشتگی اتمی را در صفحه ی لغزش دارد و مهمترین عامل در سیستم لغزش است.

 

 

  • ساختار fcc . در مواد fcc - از جمله در آهن - چهار سری صفحه ی (111) و در هر صفحه، سه امتداد انباشته ی >110< وجود دارد که مجموعاً 12 سیستم لغزش را ایجاد می کنند. این سیستم های لغزش به خوبی در بلور توزیع شده اند و ممکن نیست بلور fcc کرنش یابد که حداقل در یکی از صفحه های {111} و در یکی از امتدادهای مطلوب لغزش واقع شود. همان طور که انتظار می رود، میزان تنش بحرانی تجزیه شده برای لغزش اندک است و فلزات با این نوع ساختار شبکه ای به راحتی تغییر شکل می دهند (نقره، طلا، مس، آلومینیوم).

 

  • ساختار hcp . فلزات با ساختار hcp، تنها یک صفحه ی متراکم اتمی و سه امتداد انباشته در این صفحه دارد. با محدودبودن تعداد سیستم های لغزش، تغییر شکل با دوقلویی شدن، سیستم های لغزشی بیشتری را به موقعیت مناسب می کشاند، بنابراین مومسانی ین سیستم به مومسانی ساختار fcc نزدیک می شود و از مومسانی فلزاتbcc پیشی می گیرد.

 

  • ساختار bcc . چون فلزات bcc، در هر سلول واحد اتم کمتری دارند، دارای سیستم لغزش کاملا مشخص و صفحه ی واقعا انباشته نیستند. امتداد لغزش، امتداد فشرده ی >111< است. دلیل دیگر بر فقدان صفحه ی انباشته، تنش برشی بحرانی تجزیه شده ی نسبتاً بالا برای لغزش است. بنابراین درجه ی مومسانی آن زیاد نیست.

 

 

  • مکانیزم دوقلویی در تغییر شکل

 

در مواد معینی به خصوص فلزات hcp، دوقلویی شدن عامل اصلی تغییر شکل است. این عمل ممکن است با تغییر شکل زیاد همراه باشد، یا صرفاً صفحات لغزش را در موقعیت مناسب تری قرار دهد.

دوقلویی شدن یعنی حرکت صفحات اتمی شبکه، موازی با صفحه ای مشخص به طوری که شبکه به دو بخش قرینه، با امتدادهای مختلف تقسیم شود.

 

 

   

 

 


مقایسه سیستم های تغییر شکل (لغزش و دوقلویی)

 

 

تفاوت های موجود بین لغزش و دوقلویی شدن شامل موارد زیر می شوند:

 

  1. مقدار حرکت. در لغزش، اتمها مضرب صحیحی از فاصله ی بین اتمی را طی می کنند، در حالی که در دوقلویی شدن اتمها، کسری از این مقدار را که به فاصله شان از صفحه ی دوقلویی بستگی دارد، طی می کنند.
  2. نمایش میکروسکوپی. لغزش به صورت خطوط نازک و دوقلویی به صورت خطوط پهن یا نوار دیده می شود.
  3. جهت گیری شبکه. در لغزش تغییرات جزیی در جهتگیری شبکه پدید می آید و پله های به وجود آمده، فقط بر سطح بلور دیده می شوند. چنانچه با پرداخت کاری پله ها برطرف شوند، هیچ اثر دیگری از بروز لغزش باقی نمی ماند. در دوقلویی شدن، به سبب تغییر جهت گیری شبکه در منطقه دوقلویی شده، حتی حذف پله ها از سطح به وسیله ی پرداخت کاری هم باعث حذف آثار دوقلویی نمی شود. حکاکی با محلولهای مناسب که به تغییرات جهتگیری شبکه بلوری حساس باشند، منطقه ی دوقلوشده را آشکار می کند.

 

   

 

 


مفهوم سوپرپلاستیسیته

 

در پاره ای از مواد که دارای اندازه دانه کوچکی هستند، تغییر شکل دمای بالا رخ می دهد. این تغییر شکل به وسیله ی لغزش مرزدانه به طور وسیع و دیفوزیون و یا به وسیله ی دیفوزیون و انتقال جرم به طوری که کل دانه ها در شکل دگرگون می شوند، رخ می دهد. نیروی تغییرشکل دهنده، مادامی که آهنگ کرنش در بین حدودی خاص نگه داشته می شود و دما مناسب باشد، بسیار کوچک است و رفتار سوپرپلاستیک باقی می ماند، یعنی الانگیشن های بسیار بالا به دست می آید (بیش از صدها درصد و حتی بالاتر از هزار درصد).

بنابراین تکنیک هایی که برای شکل دادن پلیمرها طراحی شده است را می توان برای مواد سوپرپلاستیک به کار برد. پس از سردکردن از دمای SP در بسیاری از آلیاژها، استحکام فوق العاده ای ایجاد می شود. اما همان مکانیزمی که باعث تغییر شکل سوپرپلاستیک می شود نیز برای مواد ریزدانه ای که در مقابل خزش ضعیف اند، عمل می کنند، از این رو موادی که به صورت SP تغییر شکل یافته اند را میتوان برای سرویس در دمای بالا از طریق آنیل دمای بالا مناسب ساخت. دانه هایی که به این طریق رشد می کنند و بزرگ می شوند، دارای مرزدانه های نسبتاً کمی بوده و مقاومت بیشتری در مقابل خزش در آهنگ کرنش های پایین دارد.

مطابق شکل استحکام فلزات، با بزرگ تر شدن اندازه دانه، کوچکتر می شود؛ به خصوص وقتی که تغییر شکل در دمای بالا و آهنگ کرنشهای پایین به همراه نفوذ عظیمی از اتمها رخ می دهد. این ترتیب پروسه، مبنای ساخت قطعات سوپرآلیاژهای دیسکهای توربین می باشد.

 

   

 

 


تأثیر متقابل تغییر شکل و ساختار ماده

 

از تأثیر متقابل تغییر شکل و جنبه های ریزساختار آن می توان برای کنترل خواص ماده بهره برد. ساختار شمش (بیلت) ریختگی، شامل جنبه های نامطلوبی می باشند. دانه ها و بازوهای دندریتی بین دانه ها بزرگ هستند و در نتیجه استحکام ماده پایین است. دانه های ستونی ممکن است در جهت های مطلوب، جهت گیری و رشد کرده باشند که آن هم باعث بیشترشدن استحکام و داکتیلیته در بعضی از جهات می گردد. از این رو شیب غلظتی به وجود می آید و همچنین سوراخهای ریز، حفره های انقباضی و مکها و ناخالصیها نیز وجود خواهند داشت.


 

فرآیندهای مورد استفاده در طی شکل دهی فلزات

 

اغلب قطعات فلزی از شمشهای ریختگی تهیه می شوند. برای ساخت ورق، صفحه، میله، سیم و غیره از این شمش، روشهای مختلفی مورد استفاده قرار میگیرد که در زیر به مهمترین آنها اشاره می شود.

 

   

 

 


بازیابی

 

بازیابی فرآیندی دما پایین است و تغییر خواص ناشی از این فرآیند، باعث تغییر محسوس ریزساختار نمی شود. به نظر می رسد اثر عمده ی بازیابی، آزادسازی تنشهای داخلی ناشی از کارسرد است. در دمایی معین، آهنگ کرنش –سختی باقیمانده، ابتدا سریعترین مقدار خود را دارد و به تدریج افت می کند. همچنین مقدار کاهش تنش باقیمانده، با افزایش دما زیاد می شود. اگر بار به وجودآورنده ی تغییر شکل مومسان ماده ای چندبلوری حذف شود، تغییر شکل کشسان کاملا ناپدید نمی شود. این به سبب جهت گیری مخت

متالورژی، علم و تکنولوژی استفاده از فلزات است. متالورژی، به عنوان یک فن از زمانهای قدیم وجود داشته است. انسانهای گذشته بسیاری از فلزات موجود در طبیعت را می شناختند و به کار می بردند. 3500 سال قبل از میلاد از طلا برای ساختن زیورآلات، بشقاب و ظروف استفاده میشده است. فن گدازش، پالایش و شکل دادن فلزات توسط مصریان و چینی ها بسیار تکامل یافت. مصریان قدیم می دانستند چگونه آهن را از سنگ آهن جدا کنند و می دانستند که فولاد سختی پذیر است. اما استفاده از آهن تا سال 1000 قبل از میلاد رایج نشده بود. استفاده از آهن نزد مردم عهد باستان متداول نبود و آنها استفاده از طلا، نقره و مس و برنج را ترجیح می دادند.

عموما در قرون وسطی علم کار بر روی فلزات مستقیما از استاد به شاگرد منتقل می شد و در نتیجه بسیاری از فرآیندها با خرافات می آمیخت. در مورد فرآیندهای متالورزیکی بسیار کم نوشته شده بود تا اینکه برنیگوچیو کتاب پیوتکنیا را در سال 1540 و به دنبال آن کتاب دِرِ متالورژیکا را در سال 1556 منتشر کرد. طی سال های متمادی توسط مردمی که در تقلید جنس و ساتار فولاد دمشق می کوشیدند، اطلاعات بسیاری به علم افزوده شد.

تا آغاز آخرین ربع قرن نوزدهم، اغلب تحقیقات در مورد ساختار فلز با چشم غیرمسلح و به طور سطحی صورت می گرفت. علم ساختار فلزها تقریبا وجود نداشت. در این میان، نیاز به وجود افرادی که سابقه ی علمی انها بیشتر از سابقه علمی و تجربی شان بود، احساس می شد.

بعدها در سال 1922 با کشف روشهای پراش اشعه X و مکانیک موجی، آگاهی های بیشتری درباره ی ساختار و خواص فلزها حاصل شد.

متالورژی حقیقتاً علم مستقلی نیست، زیرا بسیاری از مفاهیم اساسی آن از فییک، شیمی و بلورشناسی مشتق می شود. متخصصان متالورژی به طور فزآینده ای در تکنولوؤی جدید اهمیت پیدا کرده اند. سال ها پیش بخش عمده ی قطعات فولادی از فولاد کم کربن ارزان قیمت تهیه می شد که به سهولت ماشینکاری و ساخته می شد. عملیات گرمایی به طور عمده ای برای ابزار به کار برده می شد. طراحان قادر نبودند غیریکنواختی ساختاری، عیوب سطحی و غیره را به حساب بیاورند و کار درست آن بود که ضریب ایمنی بزرگ استفاده کنند. در نتیجه، ماشینها بسیار سنگین تر از حد لازم بودند و وزن زیاد نشانه ای از مرغوبیت محسوب مس شد. این وضع تا حدودی تا سالهای اخیر نیز اثر خود را حفظ کرده بود، اما با هدایت صنایع هواپیمایی و خودروسازی کم کم برطرف می شود. این صنایع بر اهمیت نسبت استحکام به وزن در طراحی خوب تأکید می کردند و این تأکید ، به ایجاد آلیاژهای جدید سبک و پراستحکام منجر شد]1[.

 

 

   

 

 


دسته بندی رشته های متالورژی

 

متالورژی استخراجی یا فرآیندی که علم به دست آوردن فلز از کانه است و معدن کاری، تغلیظ استخراج و پالایش فلزها و آلیاژها را در برمی گیرد؛

متالورژی فیزیکی؛ علمی که با مشخصه های فیزیکی و مکانیکی فلزها و آلیاژها سر و کار دارد. در این رشته خواص فلزها و آلیاژها، که 3 متغیر زیر بر آنها اثر می گذارند، بررسی می شود:

الف. ترکیب شیمیایی– اجزای شیمیایی آلیاژ؛

ب. عملیات مکانیکی– هر عملیاتی که سبب تغییر شکل فلز می شود مانند نورد(Rolling)، کشش (Drawing)، شکل دادن یا ماشینکاری؛

ج. عملیات گرمایی – اثر دما و آهنگ گرم یا سردکردن.

 

 

 


 

مفاهیم اساسی در شکل دهی فلزات

 

هدف اصلی از عملیات شکل دهی فلز، ایجاد تغییر شکل مطلوب است. در این راستا، برای رسیدن به تغییر شکل مطلوب و همراه با خواص مورد نظر ما، باید دو نکته ی مهم مورد توجه قرار گیرند:

 

  • نیروهای لازم برای شکل دهی فلزات؛
  • خواص لازم برای شکل دهی ماده ای که مورد تغییر شکل قرار می گیرد.

 

همان طور که می دانیم، خواص ماده، بر فرآیند شکل دهی تأثیر می گذارد و بهینه سازی آن برای تغییر شکل حائز اهمیت است. اگرچه موضوعاتی چون سایش، انتقال حرارت و طراحی مکانیکی، دارای اهمیت هستند، اما در اینجا، رابطه متقابل بین ابزار و فلز در حین تغییر شکل پلاستیک و همچنین روابط متقابل بین فرآیند تغییر شکل (در اینجا نورد) و فلز مورد نظر اهمیت بیشتری دارد.

هنگامی که ماده ای تحت تنشی کمتر از حد کشسان قرار گیرد، تغییر شکل یا کرنش حاصل، گذرا خواهد بود و با حذف تنش قطعه به تدریج ابعاد اولیه ی خود را باز می یابد، اما با واردکردن تنش بیش از حد کشسان، ماده تغییر شکل مومسان یا دائمی می دهد و قطعه به شکل اولیه باز نمی گردد، مگر با صرف نیرو.

شاید شکل پذیری فلز، برجسته ترین مشخصه ی آن در مقایسه با دیگر مواد باشد. کلیه عملیات شکل دهی همچون پرسکاری، ورق کشی، نورد، آهنگری، کشش و اکستروژن مستلزم تغییر شکل مومسان اند. عملیات مختلف ماشینکاری نظیر تراشکاری، برشکاری و سوراخکاری نیز با تغییر شکل مومسان همراه است.

رفتار فلز تحت تغییر شکل مومسان و مکانیسمی که توسط آن این تغییرات روی میدهد، در تکمیل عملیات فلزکاری اهمیت اساسی دارد.

با بررسی رفتار یک تک بلور تنش یافته، اطلاعات زیادی در مورد مکانیسم تغییر شکل به دست می آید که می توان آن را در مورد مواد چندبلوری نعمیم داد. تغییر شکل مومسان با لغزش، دوقلویی شدن یا ترکیبی از این دو روش انجام می شود.

 

   

 

 


مکانیزم های تغییر شکل

 

  • مکانیزم لغزش در تغییر شکل

 

دو بخش بلور در دو طرف یک صفحه ی لغزش در جهات مخالف هم حرکت می کنند و با رسیدن به حالتی که اتمها تقریبا در حالت موازنه اند، توقف می کنند، به طوری که تغییر جهت گیری شبکه بسیار اندک است. بنابراین شکل خارجی بلور بدون تخریب آن تغییر می کند. بررسی با روشهای حساس پرتو X نشان می دهد که بعد از تغییر، مقداری خمش یا چرخش در صفحه های شبکه پدید آمده است و اتمها کاملا در موقعیت عادی خود قرار ندارند.

 

(الف)              (ب)                (ج)

شکل 1 : (الف) لغزش هنگام کشش قبل از کرنش؛ (ب) با انتهای مقید شده در هنگام کرنش؛ (ج) صفحه و امتداد لغزش در شبکه fcc؛

فرض منطقی در این مورد این است که اتمها متوالیاً می لغزند، یعنی حرکت از یک یا چند نقطه در صفحه ی لغزش شروع و سپس در بقیه ی صفحه منتشر می شود.

نا به جایی ها در عرض صفحه ی لغزش حرکت می کنند و وقتی به سطح بیرونی می رسد، یک پله به جا می گذارد. هر وقت نابجایی در صفحه لغزش حرکت می کند، بلور به اندازه ی یک فضای اتمی حرکت می کند. چون بعد از عبور نابه جایی اتمها کاملاً در محل معمول خود قرار نمی گیرند، حرکت بعدی نابجایی در همان صفحه ی لغزش با مقاومت بیشتری مواجه می شود تا نابه جایی را در ساختار بلور قفل کند و حرکت متوقف شود. ادامه ی تغیی شکل نیاز به حرکت در صفحه ی لغزش دیگری دارد.

به ترکیب یک صفحه و یک جهت لغزش ، سیستم لغزش گفته می شود. امتداد لغزش، همواره امتدادی است که بیشترین انباشتگی اتمی را در صفحه ی لغزش دارد و مهمترین عامل در سیستم لغزش است.

 

 

  • ساختار fcc . در مواد fcc - از جمله در آهن - چهار سری صفحه ی (111) و در هر صفحه، سه امتداد انباشته ی >110< وجود دارد که مجموعاً 12 سیستم لغزش را ایجاد می کنند. این سیستم های لغزش به خوبی در بلور توزیع شده اند و ممکن نیست بلور fcc کرنش یابد که حداقل در یکی از صفحه های {111} و در یکی از امتدادهای مطلوب لغزش واقع شود. همان طور که انتظار می رود، میزان تنش بحرانی تجزیه شده برای لغزش اندک است و فلزات با این نوع ساختار شبکه ای به راحتی تغییر شکل می دهند (نقره، طلا، مس، آلومینیوم).

 

  • ساختار hcp . فلزات با ساختار hcp، تنها یک صفحه ی متراکم اتمی و سه امتداد انباشته در این صفحه دارد. با محدودبودن تعداد سیستم های لغزش، تغییر شکل با دوقلویی شدن، سیستم های لغزشی بیشتری را به موقعیت مناسب می کشاند، بنابراین مومسانی ین سیستم به مومسانی ساختار fcc نزدیک می شود و از مومسانی فلزاتbcc پیشی می گیرد.

 

  • ساختار bcc . چون فلزات bcc، در هر سلول واحد اتم کمتری دارند، دارای سیستم لغزش کاملا مشخص و صفحه ی واقعا انباشته نیستند. امتداد لغزش، امتداد فشرده ی >111< است. دلیل دیگر بر فقدان صفحه ی انباشته، تنش برشی بحرانی تجزیه شده ی نسبتاً بالا برای لغزش است. بنابراین درجه ی مومسانی آن زیاد نیست.

 

 

  • مکانیزم دوقلویی در تغییر شکل

 

در مواد معینی به خصوص فلزات hcp، دوقلویی شدن عامل اصلی تغییر شکل است. این عمل ممکن است با تغییر شکل زیاد همراه باشد، یا صرفاً صفحات لغزش را در موقعیت مناسب تری قرار دهد.

دوقلویی شدن یعنی حرکت صفحات اتمی شبکه، موازی با صفحه ای مشخص به طوری که شبکه به دو بخش قرینه، با امتدادهای مختلف تقسیم شود.

 

 

   

 

 


مقایسه سیستم های تغییر شکل (لغزش و دوقلویی)

 

 

تفاوت های موجود بین لغزش و دوقلویی شدن شامل موارد زیر می شوند:

 

  1. مقدار حرکت. در لغزش، اتمها مضرب صحیحی از فاصله ی بین اتمی را طی می کنند، در حالی که در دوقلویی شدن اتمها، کسری از این مقدار را که به فاصله شان از صفحه ی دوقلویی بستگی دارد، طی می کنند.
  2. نمایش میکروسکوپی. لغزش به صورت خطوط نازک و دوقلویی به صورت خطوط پهن یا نوار دیده می شود.
  3. جهت گیری شبکه. در لغزش تغییرات جزیی در جهتگیری شبکه پدید می آید و پله های به وجود آمده، فقط بر سطح بلور دیده می شوند. چنانچه با پرداخت کاری پله ها برطرف شوند، هیچ اثر دیگری از بروز لغزش باقی نمی ماند. در دوقلویی شدن، به سبب تغییر جهت گیری شبکه در منطقه دوقلویی شده، حتی حذف پله ها از سطح به وسیله ی پرداخت کاری هم باعث حذف آثار دوقلویی نمی شود. حکاکی با محلولهای مناسب که به تغییرات جهتگیری شبکه بلوری حساس باشند، منطقه ی دوقلوشده را آشکار می کند.

 

   

 

 


مفهوم سوپرپلاستیسیته

 

در پاره ای از مواد که دارای اندازه دانه کوچکی هستند، تغییر شکل دمای بالا رخ می دهد. این تغییر شکل به وسیله ی لغزش مرزدانه به طور وسیع و دیفوزیون و یا به وسیله ی دیفوزیون و انتقال جرم به طوری که کل دانه ها در شکل دگرگون می شوند، رخ می دهد. نیروی تغییرشکل دهنده، مادامی که آهنگ کرنش در بین حدودی خاص نگه داشته می شود و دما مناسب باشد، بسیار کوچک است و رفتار سوپرپلاستیک باقی می ماند، یعنی الانگیشن های بسیار بالا به دست می آید (بیش از صدها درصد و حتی بالاتر از هزار درصد).

بنابراین تکنیک هایی که برای شکل دادن پلیمرها طراحی شده است را می توان برای مواد سوپرپلاستیک به کار برد. پس از سردکردن از دمای SP در بسیاری از آلیاژها، استحکام فوق العاده ای ایجاد می شود. اما همان مکانیزمی که باعث تغییر شکل سوپرپلاستیک می شود نیز برای مواد ریزدانه ای که در مقابل خزش ضعیف اند، عمل می کنند، از این رو موادی که به صورت SP تغییر شکل یافته اند را میتوان برای سرویس در دمای بالا از طریق آنیل دمای بالا مناسب ساخت. دانه هایی که به این طریق رشد می کنند و بزرگ می شوند، دارای مرزدانه های نسبتاً کمی بوده و مقاومت بیشتری در مقابل خزش در آهنگ کرنش های پایین دارد.

مطابق شکل استحکام فلزات، با بزرگ تر شدن اندازه دانه، کوچکتر می شود؛ به خصوص وقتی که تغییر شکل در دمای بالا و آهنگ کرنشهای پایین به همراه نفوذ عظیمی از اتمها رخ می دهد. این ترتیب پروسه، مبنای ساخت قطعات سوپرآلیاژهای دیسکهای توربین می باشد.

 

   

 

 


تأثیر متقابل تغییر شکل و ساختار ماده

 

از تأثیر متقابل تغییر شکل و جنبه های ریزساختار آن می توان برای کنترل خواص ماده بهره برد. ساختار شمش (بیلت) ریختگی، شامل جنبه های نامطلوبی می باشند. دانه ها و بازوهای دندریتی بین دانه ها بزرگ هستند و در نتیجه استحکام ماده پایین است. دانه های ستونی ممکن است در جهت های مطلوب، جهت گیری و رشد کرده باشند که آن هم باعث بیشترشدن استحکام و داکتیلیته در بعضی از جهات می گردد. از این رو شیب غلظتی به وجود می آید و همچنین سوراخهای ریز، حفره های انقباضی و مکها و ناخالصیها نیز وجود خواهند داشت.


 

فرآیندهای مورد استفاده در طی شکل دهی فلزات

 

اغلب قطعات فلزی از شمشهای ریختگی تهیه می شوند. برای ساخت ورق، صفحه، میله، سیم و غیره از این شمش، روشهای مختلفی مورد استفاده قرار میگیرد که در زیر به مهمترین آنها اشاره می شود.

 

   

 

 


بازیابی

 

بازیابی فرآیندی دما پایین است و تغییر خواص ناشی از این فرآیند، باعث تغییر محسوس ریزساختار نمی شود. به نظر می رسد اثر عمده ی بازیابی، آزادسازی تنشهای داخلی ناشی از کارسرد است. در دمایی معین، آهنگ کرنش –سختی باقیمانده، ابتدا سریعترین مقدار خود را دارد و به تدریج افت می کند. همچنین مقدار کاهش تنش باقیمانده، با افزایش دما زیاد می شود. اگر بار به وجودآورنده ی تغییر شکل مومسان ماده ای چندبلوری حذف شود، تغییر شکل کشسان کاملا ناپدید نمی شود. این به سبب جهت گیری مخت


دانلود با لینک مستقیم


تحقیق و بررسی در مورد متالوژی