حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلوذ تحقیق بزرگترین مردهای اقتصادی 125 ص

اختصاصی از حامی فایل دانلوذ تحقیق بزرگترین مردهای اقتصادی 125 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 175

 

Akio Morita

بنیانگذار sony

«Akio Morita» در 26 ژانویه سال 1921 در «Nagoya» کشور ژاپن متولد شد. او که در رشته فیزیک تحصیل می کرد، با آغاز جنگ جهانی دوم به خدمت ارتش ژاپن درآمد و در ناوگان دریایی ارتش به کار مشغول شد.

در هفتم ماه مه سال 1946 «Marito» به همراه یکی از همرزمانش در جنگ با نام «Masaru Ibuka» یک شرکت تعمیر رادیوهای دست دوم تحت عنوان «Tokyo Tsushin kogyo» بنا کردند. در آن زمان «Morita» 25 سال و «Ibuka» 38 سال داشت و هر دو با سرمایه اولیه 190 هزار ین ژاپن شرکت را با 20 کارمند اداره می کردند.

در سال 1949 شرکت اولین نوارهای مغناطیسی خود را روانه بازار کرد و در سال 1950 توانست اولین ضبط صوت های ژاپنی را تولید نماید. در سال 1957 نیز اولین رادیوهای جیبی توسط این کمپانی تولید و به بازار عرضه گردید. یکسال بعد زمانی که شرکت کوچک سابق حال به یک کمپانی نسبتا صاحب نام تبدیل شد، تصمیم به تغییر عنوان آن به «Sony» گرفته شد . در سال 1960 کمپانی Sony اولین تلویزیون های ترانزیستوری را ابداع نمود و بعد به طور گسترده روانه بازار نمود. در سال 1965 نیز اولین دوربین فیلمبرداری خانگی توسط این کمپانی ساخته و به بازار عرضه شد. پس از آن محصولات مهم Sony عبارت بودند از «Walkman» تلویزیون های «Trinitron» مایکرو دیسکت های کامپیوتر و سرانجام از «Sony Playstation» که هر یک شهرت فراوانی را به سوی این امپراطوری عظیم روانه ساخت. با گسترده تر شدن فعالیت کمپانی در عرصه الکترونیک و افزایش حجم تقاضا از سراسر دنیا شعبات متعددی در سراسر این کره خاکی بنا شد. در کشور آمریکا این شعبه در سال 1970 کار خود را با ریاست شخص «Morita» آغاز نمود و اینگونه شد که «Sony» به عنوان اولین شرکت ژاپنی در بورس نیویورک حضور یافت. دو سال بعد یعنی در سال 1972 مجددا Sony اولین کمپانی بود که یک کارخانه آمریکایی دایر می کرد.

البته روند کاری «Morita» و قلمرو تحت فرمانش همیشه با خط سیر صعودی همراه نبوده است. شکست Sony در رقابت با کمپانی Matsushita در عرضه و تولید نوارهای VHS و همچنین خرید ناموفق 4/3 میلیارد دلاری این شرکت که قصد داشت با در اختیار گرفتن کمپانی فیلم سازی «Columbia Pictures» حضور قطعی در هالیوود داشته باشد، از جمله روزگار تخلی به شمار می روند

که در دوره ای مشکلات عدیده ای برای پادشاهی Sony پدید آورده بودند. اما به هر حال sonyهمواره حرف اول را در بازار الکترونیک می زده و می زند.

در رابطه زندگی شخصی «Morita» نکات جالبی وجودارد . او در مدت زندگانی اش دوستان پرنفوذ بسیاری در سراسر دنیا علاوه بر کشور ژاپن داشت که نخست وزیر پیشین ژاپن و همچنین «Kissinger» رئیس جمهور دهه های سابق ایالات متحده از جمله این افراد به شمار می روند.

در اواخر دهه 1990 ثروت او که بیش از 3/1 میلیارد دلار تخمین زده می شد سبب گشت تا مجله اقتصادی «Forbes» نام «Morita» را در لیست ثروتمندترین های دنیا قرار دهد. همچنین او تنها غیر آمریکایی بود که مجله «Time» به عنوان بزرگترین و موفق ترین مدیران و بازرگانان در لیست خود جای داد. او همچنین به سبب سیاست های اقتصادی و مهارت های مدیریتی که از خود به نمایش گذارد، از سوی مجامع علمی مختلف ژاپن ، انگلستان و ایالات متحده نشان یادبود و لیاقت دریافت کرد.

دیگر اینکه به سبب مشغله فراوان کاری در دوران جوانی «Morita» پس از سن 50 سالگی تازه به یادگیری ورزش های اسکی، تنیس و همچنین غواصی روی آورد که این امر در نوع خود بی نظیر است. اشتغال یکباره او به این ورزش ها موجب گردید تا در سال 1993 هنگامی که مشغول بازی تنیس بود، دچار حمله قلبی شود و مابقی عمر را بر روی صندلی چرخ دار سپری نماید. یکسال بعد یعنی در سال 1994 از سمت خود در کمپانیSony استعفا داد و «Norio Ohga» را جانشین خود ساخت.

سرانجام « Akio Morita» در سوم اکتبر 1999 در سن 78 سالگی بر اثر بیماری ذات الریه جان سپرد و تمامی اموال و دارایی خود را برای همسر و دو پسر و تنها دخترش به ارث گذاشت.

هم اکنون امپراطوری عظیم Sony با فروش سالانه بیش از 33 میلیارد دلار، در جایگاه قدرتمندترین بازار صوتی تصویری قرار دارد.

Barry Diller

نابغه رسانه‌ها

با بیش از 40 سال سابقه کاری، «Barry Diller» از معدود مدیرانی است که در عرصه تلویزیون به سراغ هر شبکه‌ای رفته، با ابتکار عمل خود توانسته میزان شهرت و محبوبیت آن را به طور شگفت‌آوری افزونی بخشد. اگرچه هیچ‌یک از شبکه‌های تلویزیونی را به طور طولانی در اختیار نداشته است اما همان زمان اندک کافی بوده تا نبوغ او خودش را آشکار نماید و به بالاترین حد کارآیی رسد. حضور او در کمپانی‌های بزرگ رسانه‌ای چون ABC، «Paramount» و « Twenieth Century Fox» خود دلالت بر این دارد که می‌توان نقش مهمی را در تولید فیلم‌ها و برنامه‌های دیدنی دنیا به او بخشید.

«Barry Diller» در دوم فوریه سال 1942 در سانفرانسیسکو دیده به جهان گشود. اولین گام‌های نردبان ترقی‌اش را زمانی برداشت که در شرکت «William Morris Agency » در بخش رسیدگی به نامه‌های رسیده فعالیت می‌کرد. پس از آن در سال 1966 به شبکه «ABC» پیوست و در بخش برنامه‌سازی مشغول به کار شد. تقریباً همان جا بود که مدیران ارشد کمپانی پی به نبوغ ذاتی او بردند و تصمیم به ارتقای سطح شغلی او گرفتند و از این رو در سال 1969 به عنوان معاونت شبکه در امر توسعه فیلم‌ها و برنامه‌های


دانلود با لینک مستقیم


دانلوذ تحقیق بزرگترین مردهای اقتصادی 125 ص

بزرگترین ریاضی دانان

اختصاصی از حامی فایل بزرگترین ریاضی دانان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

بزرگترین ریاضی دانان

بنام خداوند هستی بخش

لاگرانژ ژوزف لویی لاگرانژ در 25 ژانویه سال 1736 در تورینو ایتالیا متولد شد او که از بزرگترین ریاضی دانان تمام ادوار تاریخ می باشد هنگام تولد بیش از حد ضعیف و ناتوان بود و از 11 فرزند خانواده فقط او زنده مانده بود. زندگی لاگرانژ را می توان به سه دوره تقسیم کرد: نخستین دوره شامل سالهایی می شود که در موطنش تورینو سپری شد(1736 – 1766) دوره دوم دوره ای بود که وی بین سالهای 1766 و 1787 در فرهنگستان برلین کار می کرد دوره سوم از 1787 تا 1813 که عمر وی به پایان رسید در پاریس گذشت. دوره اول و دوم از نظر فعالیتهای علمی پر ثمرترین دوره ها بودند که با کشف حساب تغییرات در 1754 آغاز گردید و با کاربرد آن در مکانیک در 1756 ادامه یافت در این نخستین دوره وی در باره مکانیک آسمانی نیز کار کرد دوره اقامت در برلین هم از نظر مکانیک و هم از لحاظ حساب دیفرانسیل وانتگرال سازنده بود با این حال در آن دوره لاگرانژ در درجه اول در زمینه حل عددی و جبری معادلات و حتی فراتر از آن در نظریه اعداد، چهره ای برجسته و ممتاز شده بود. سالهای اقامتش در پاریس را صرف نوشته های آموزشی و تهیه رساله های بزرگی نمود که استنباطهای ریاضی وی را خلاصه می کردند این رساله هادر هنگامی که عصر ریاضیات قرن 18 در شرف پایان بود مقدمات عصر ریاضیات قرن 19 را فراهم کردند و از برخی جهات آن دوره را گشودند. پدر لاگرانژ وی را نامزد آموختن حقوق نمود اما لاگرانژ به محض آنکه تحصیل فیزیک را زیر نظر بکاریا و تحصیل هندسه را زیر نظر فیلیپو آنتونیو رولی آغاز کرد به سرعت متوجه تواناییهای خود شد و بنابراین خویشتن را وقف علوم دقیق تر کرد. در 1757 چند دانشمند جوان تورینویی که لاگرانژ وکنت سالوتسو و جووانی چنییای فیزیکدان در میان آنها بودند انجمنی علمی بنیاد نهادند که منشاء فرهنگستان سلطنتی علوم تورینو گردید یکی از اهداف اصلی آن انجمن انتشار جنگ بود به زبان فرانسوی و لاتینی به نام (جنگ تورینو) که لاگرانژ خدمتی بنیادی به آن کرد سه جلد اول آن تقریباٌ‌ حاوی تمامی آثاری بود که وی هنگام اقامت در تورینو به چاپ رسانده بود. فعالیت لاگرانژ در مکانیک آسمانی غالباٌ بر محور مسابقه هایی دور می زند که از طرف انجمنهای مختلف علمی پیشنهاد شده بودند اما به این گونه مسابقه ها منحصر نبود. در تورینو غالباٌ‌ کارش جهت گیری مستقل داشت و در 1782 به دالامبر و لاپلاس نوشت که در باره تغییرات قرنی نقطه های نهایی اوج و خروج از مرکز تمام سیارات کار می کند. این پژوهش لاگرانژ به اتنشار کتاب انجامید با عنوان نظریه تغییرات قرنی عناصر سیارات و مقاله ای با عنوان در باره تغییرات قرنی حرکات متوسط سیارات که در سال 1785 منتشر شد. لاگرانژ در برلین و در سال 1768 مقاله حل مسئله ای از حساب را برای جنگ تورینو فرستاد تا در جلد چهارم درج شود در آن نوشته لاگرانژ به نوشته قبلی خود اشاره داشت و از طریق کاربرد ظریف و استادانه الگوریتم کسرهای پیوسته ثابت کرد که معادله فرما (ریاضی دان معروف) را در صورتی می توان در تمام حالات حل کرد که اعداد درست مثبت باشند، این است نخستین راه حل شناخته شده این مسئله مشهور. آخرین بخش این نوشته در مقاله ای با عنوان روش جدید برای حل مسائل نامحدود دراعداد درست بسط یافت که در نشریه یاداشتهای برلین برای سال 1768 عرضه شد ولی تا فوریه آن سال کامل نگردید و در سال 1770 منتشر شد. از بزرگترین شاهکارههای علمی لاگرانژ رساله مکانیک تحلیلی را می توان نام برد که در سال 1788 انتشار یافت او در آن اثر پیشنهاد کرد که بهتر است نظریه مکانیک و فنون حل کردن مسائل آن رشته به فرمولهایی کلی تحویل شوند، فرمولهایی که هر گاه پیدا شوند همه معادله های لازم برای حل هر مسئله را بوجود خواهند آورد. باری، لاگرانژ تصمیم گرفت که چاپ دومی از آن اثر منتشر کند که حاوی برخی پیشرفتها باشد او قبلاٌ در یادداشتهای انستیتو چند مقاله منتشر کرده بود که آخرین و درخشانترین خدمت وی را در راه پیشبرد مکانیک آسمانی نشان می دادند او قسمتی از آن نظریه را در جلد اول رساله تجدید نظر شده گنجانید. لاگرانژ مردی محجوب ومتواضع بود او بسیار ساده و راحت هنگامی که از یک مطلب علمی اطلاع نداشت می‌گفت نمی دانم. لاگرانژ در سال 1813 در پاریس درگذشت او در زمان مرگش 77 سال داشت.

لاپلاس پیتر سیمون لاپلاس در 23 مارس 1749 در حوالی پون لوک فرانسه متولد شد پدرش دهقان فقیری بود و از کودکی خودش اطلاعی در دست نیست لاپلاس از جمله مؤثرترین دانشوران در طول تاریخ می باشد او به محض اینکه ریاضیدان مشهوری شد و افتخاراتی کسب نمود اصل و نسب خود را مخفی نگاه می داشت، مشهور است که لاپلاس برای ملاقات دالامبر ریاضیدان با ارزش در یکی از روزهای سال 1770 به خانه او می رود و با وجود توصیه هایی که ارائه می دهد کمک قابل توجهی از طرف زیاضی دان بزرگ نسبت به او نمی شود لاپلاس مایوس نمی شود و نامه ای برای دالامبر می فرستد و در آن افکار خویش را درباره اصل مکانیک شرح می دهد دالامبر به محض خواندن نامه نویسنده را احضار می کند و به او می گوید چنانچه ملاحظه میکنید من به توصیه و سفارش ترتیب اثر نمی دهم ولی شما برای شناساندن خود وسیله خوبی بدست آوردید دالامبر فوراٌ‌ لاپلاس را به سمت استاد مدرسه نظامی پاریس انتخاب می کند. در مرحله اول لاپلاس نوشته هایی در باره مسائل حساب انتگرال، اختر شناسی، ریاضی کیهان شناسی نظریه بازیهای بخت آزمایی و علیت تالیف کرد در این دوره سازنده وی سبک و شهرت و موضع فلسفی و برخی شیوه های ریاضی خود را ساخته و پرداخته کرد و برنامه ای برای پژوهش در دو زمینه – احتمالات و مکانیک آسمانی – تنظیم نمود که بقیه عمر را به کار ریاضی در باره آنها پرداخت در مرحله دوم در هر دو زمینه به بسیاری از نتایج عمده ای رسید که به سبب آنها مشهور است و بعدها آنها را در رساله های بزرگ خو«مکانیک سماوی 1799 – 1825) و نظریه تحلیلی(1812) گنجانید اطلاع از بخش اعظم این مسائل به وسیله شیوه های ریاضی صورت گرفت که او در آن زمان یا قبل از آن، به وجود آورد ابداع کرده بود مهمترین آنها عبارتند از توابع مولد، که از آن پس به نام وی خوانده شدند. بسط، که آن نیز در نظریه دترمینانها به نام وی گردید، تغییر مقادیر ثابت به منظور رسیدن به راه حلهای تقریبی در انتگرال گیری عبارتهای اختر شناسی و ابع گرانشی تعمیم یافته که بعدها با دخالت پواسون به صورت تابع پتانسیل برق و مغناطیس قرن 19 در آمد همچنین در طی همین دوره بود که لاپلاس به سومین حوزه علایقش – یعنی فیزیک که با همکاری لاوازیه در زمینه نظریه گرما بود، وارد گردید و تا حدودی در نتیجه آن همکاری بود که وی تبدیل به یکی از اعضای مؤثر حلقه درونی مجمع ملی شد. اولین مسئله مورد توجه لاپلاس دنبال نمودن کار اسحاق نیوتن بود زیرا اسحاق نیوتن قانون اصلی مکانیک آسمانی را یافته بود و لاپلاس می خواست این قانون را در مورد تمام اجسام منظومه شمسی به کار برد لاپلاس شروع به تعیین قوانین مکانیک سیارات کرد تا نشان دهد که این اجسام مانند سایر اجسام تابع قوانین فیزیکی هستند اولین موضوعی که لاپلاس نزد خود مطرح می کند موضوع ثبات دستگاه شمسی است که آیا به وضعی که داراست می ماند یا بالاخره ماه روی زمین سقوط می کند و سیارات بر جرم خورشید پرتاب شده و معدوم می گردند اسحاق نیوتن هم این سؤال را مطرح کرده بود و به این نتیجه رسیده بود که باید گاهگاهی دست خداوند در کار بیاید و حرکات آنها را به جریان عادی برگرداند ولی لاپلاس گفت اگر چه وضع سیارات نسبت به خورشید تغییر می کند ولی این تغییرات تناوبی است لاپلاس تمام این اکتشافات را تحت عنوان مکانیک آسمانی منتشر ساخت ولی چون فهم مطالبش برای همه کس مقدور نبود لذا تصمیم گرفت کتابی دیگر بنویسد که مردم عادی هم از آن بهره مند گردند این کتاب تحت عنوان شرح دستگاههای جهانی منتشر شد. لاپلاس علاوه بر نجوم و ریاضیات استادی عالیقدر در علم فیزیک بود و در باره لوله های موئین و انتشار امواج صوتی مطالعات فراوانی داشت از مهمترین آثار لاپلاس تئوری تحلیلی احتمالات را که در سال 1812 نوشته است می توان نام برد لاپلاس را که دانشمندی بی همتا می توان گفت متاسفانه نسبت به تمام حکومتهایی که پی در پی عوض می شدند تملق می گفت و از آنها استفاده می کرد در مقابل ناپلئون تا زانو تعظیم می کرد و به همین علتها بود که از طرف امپراطور به مقامهای کنت – سناتور – ریاست مجلس سنا انتخاب شد با وجود اینها وقتی ناپلئون اسیر شد به او پشت کرد و به عزلش رای داد و خود را در دامان لویی هجدهم انداخت و از طرف او به سمت رئیس کمیته تجدید تشکیلات مدرسه پلی تکنیک و عضو مجلس عیان انتخاب شد. لاپلاس با تمام این اوصاف جوانان را تشویق و کمک می کرد به طوری که روزی یکی از اکتشافات جوان ناشناسی بنام بیو از طرف آکادمی مورد تمجید قرار گرفت او را نزد خود خواند و معلوم گردید لاپلاس قبلاٌ این اکتشاف را مورد مطالعه قرار داده سات. لاپلاس اواخر عمر را در آرکوری نزدیک پاریس در عمارت ییلاقی خود که نزدیک دوستش برتوله بود گذارنید او روز 5 مارس 1812 در 78 سالگی در گذشت در حالیکه آخرین حرف او این بود: آنچه می دانیم بسیار ناچیز و آنچه نمی دانیم عظیم و وسیع است.

پیام های دیگران ( 12 نظر )        link        چهارشنبه، 24 آبان، 1385 - سجاد لرستانی

زندگی نامه دانشمندان ریاضیات

گاسپار مونژ در سال 1746 در شهر کوچک بون واقع در فرانسه متولد شد. مونژ که فرزند کاسب دوره گردی بود در 16 سالگی به تیزکردن چاقو و


دانلود با لینک مستقیم


بزرگترین ریاضی دانان

تحقیق در مورد بزرگترین عدد اول 14 ص

اختصاصی از حامی فایل تحقیق در مورد بزرگترین عدد اول 14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

بزرگترین عدد اول

بزرگ ترین عدد اولی که تا کنون کشف شده است، عدد     ۱- ۲۳۰۴۰۲۴۵۷  است که ۹۱۵۲۰۵۲ رقم دارد.

 عدد اول : هر عدد طبیعی بزرگ تر از یک که فقط بر خودش ویک بخش پذیر باشد،عدد اول نامیده می شود. مثل ۲ ، ۳ ، ۵ ، ۷ ، ...

عدد مرکب : هرعدد طبیعی بزرگ تراز یک که به جز خودش و یک بر عدد طبیعی دیگری نیزبخش پذیر باشد، عددی مرکب نامیده می شود . مثل ۴ ، ۶ ، ۸ ، ۹ ، ...

عدد مرسن :اعداد اولی به شکل ۱- Mn = ۲n که در آن n اول باشد، اعداد اول مرسن نامیده می شوند. مثل اعداد ۳ و۷ که اولین و دومین اعداد اول مرسن هستند.

( ۱- ۲۲ = ۳ و ۱ - ۲۳ = ۷ )

 نخستین اعداد اول مرسن عبارت اند از : ۳ ، ۷ ، ۳۱ ، ۱۲۷ ، ۸۱۹۱ ، ۱۳۱۰۷۱ ، ۲۱۴۷۴۸۳۶۴۷ ، ... که به ترتیب با n های اول ۲ ، ۳ ، ۵ ، ۷، ۱۳ ، ۱۷ ، ۱۹ ، ... متناظر هستند.

آقای مونک مارین مرسن فرانسویMonk Marin Mersenne۱۶۴۸-۱۵۸۸) ) که این اعداد را کشف کرد حدوداً ۳۵۰ سال قبل می زیسته است و اکنون ابر رایانه ها به کمک فرمول او سرگرم جستجوی اعداد اول بزرگ هستند.

بی شمار عدد اول وجود دارد اما علی رغم کوشش های فراوان هنوز هیچ رابطه یا نظمی که بتواند نحوه ی پراکندگی این عددها را در بین سایر اعداد نشان دهد، پیدا نشده است. به نظر می رسد که اعداد اول بدون هیچ نظم و الگویی و از روی تصادف در میان اعداد پراکنده شده اند. پیدا کردن بزرگ ترین عدد اول نه تنها برای ریاضیدان ها بلکه برای مهندسان و طراحان نرم افزارهای رایانه ای نیز بسیار مهم است. چرا که یکی از کاربردهای اصلی اعداد اول در مسائل امنیت و ایمنی ارتباطات رایانه ای و به ویژه شبکه های مبادلاتی الکترونیک است. فرض کنید شما یک عدد اول بسیار بزرگ داشته باشید و از آن به عنوان یک کد یا یک امضای الکترونیک استفاده کنید و از عدد غول پیکر اول دیگری نیز به عنوان پاسخ امضاء یا تاییدیه استفاده نمایید. به این دلیل که اعداد اول هیچ توزیع منظمی ندارند بنابراین رمزهایی که بر اساس آن ها ساخته شده باشد به راحتی قابل شکستن نخواهد بود. این انگیزه ی مهمی برای جستجوی اعداد اول بزرگ تر است.بزرگ ترین عدد اول که چهل و سومین عدد مرسن است کشف شد. شبکه رایانه ایGIMPS ( Great Internet Prime Search)عدداول   ۱- ۲۳۰۴۰۲۴۵۷ راکه ۹۱۵۲۰۵۲ رقم دارد کشف کرد.

 

تعریف اعداد اول

عدد طبیعی P>1 را عدد اول می گویند هرگاه تنها مقسوم علیه های مثبت آن 1 و P باشند. به عبارت دیگر یک عدد طبیعی اول است هرگاه جز یک و خودش بر هیچ عدد دیگری بخش پذیر نباشد. هر عدد طبیعی مخالف یک که اول نباشد مرکب یا تجزیه پذیر می گوییم.

به عنوان مثال اعداد 2و3و5و7 اول و اعداد 12و18و325 مرکب می باشند.

لازم به ذکر است که عدد یک نه اول و نه مرکب است و تنها عدد اول زوج عدد 2 است.

اگر n عددی مرکب باشد می توان گفت:

نتیجه: اگر P عددی اول . a و b اعدادی طبیعی باشند، در این صورت:

 

قضیه بنیادی حساب:

هر عدد طبیعی بزرگتر از یک را می توان به صورت یکتایی به صورت حاصل ضرب عوامل اول نوشت. به عبارت دیگر اگر n عددی طبیعی و بزرگتر از 1 باشد: که در آن ها اعداد اول متمایر می باشند. این نمایش را تجزیه عدد n به عوامل اول می گوییم.

همچنین اگر n

 

 

که در آن ها اعداد اول متمایز می باشند.

توجه: اگر n=1 باشد آنگاه که در ان P هر عدد اولی است.

لازم به توضیح است که ممکن است در تجزیه یک عدد طبیعی به عوامل اول، تعدادی از عوامل یکسان باشند. به عنوان مثال:12=2×2×3

تجزیه استاندارد یک عدد: اگر n>1 عددی طبیعی باشد آنگاه عدد n را می توان به شکل یکتایی به صورت:

 

که در آن ها اعداد اول متمایز و اعداد طبیعی اند. این روش نمایش و تجزیه عدد را تجزیه متعارف، استاندارد، یا کانونیک عدد n می گویند.

توجه: بزرگترین توان که: را به صورت می دهند.

به عنوان مثال تجزیه استاندارد 12 به عوامل اول به صورت مقابل است:


دانلود با لینک مستقیم


تحقیق در مورد بزرگترین عدد اول 14 ص

تحقیق درمورد بزرگترین عدد اول 14 ص

اختصاصی از حامی فایل تحقیق درمورد بزرگترین عدد اول 14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

بزرگترین عدد اول

بزرگ ترین عدد اولی که تا کنون کشف شده است، عدد     ۱- ۲۳۰۴۰۲۴۵۷  است که ۹۱۵۲۰۵۲ رقم دارد.

 عدد اول : هر عدد طبیعی بزرگ تر از یک که فقط بر خودش ویک بخش پذیر باشد،عدد اول نامیده می شود. مثل ۲ ، ۳ ، ۵ ، ۷ ، ...

عدد مرکب : هرعدد طبیعی بزرگ تراز یک که به جز خودش و یک بر عدد طبیعی دیگری نیزبخش پذیر باشد، عددی مرکب نامیده می شود . مثل ۴ ، ۶ ، ۸ ، ۹ ، ...

عدد مرسن :اعداد اولی به شکل ۱- Mn = ۲n که در آن n اول باشد، اعداد اول مرسن نامیده می شوند. مثل اعداد ۳ و۷ که اولین و دومین اعداد اول مرسن هستند.

( ۱- ۲۲ = ۳ و ۱ - ۲۳ = ۷ )

 نخستین اعداد اول مرسن عبارت اند از : ۳ ، ۷ ، ۳۱ ، ۱۲۷ ، ۸۱۹۱ ، ۱۳۱۰۷۱ ، ۲۱۴۷۴۸۳۶۴۷ ، ... که به ترتیب با n های اول ۲ ، ۳ ، ۵ ، ۷، ۱۳ ، ۱۷ ، ۱۹ ، ... متناظر هستند.

آقای مونک مارین مرسن فرانسویMonk Marin Mersenne۱۶۴۸-۱۵۸۸) ) که این اعداد را کشف کرد حدوداً ۳۵۰ سال قبل می زیسته است و اکنون ابر رایانه ها به کمک فرمول او سرگرم جستجوی اعداد اول بزرگ هستند.

بی شمار عدد اول وجود دارد اما علی رغم کوشش های فراوان هنوز هیچ رابطه یا نظمی که بتواند نحوه ی پراکندگی این عددها را در بین سایر اعداد نشان دهد، پیدا نشده است. به نظر می رسد که اعداد اول بدون هیچ نظم و الگویی و از روی تصادف در میان اعداد پراکنده شده اند. پیدا کردن بزرگ ترین عدد اول نه تنها برای ریاضیدان ها بلکه برای مهندسان و طراحان نرم افزارهای رایانه ای نیز بسیار مهم است. چرا که یکی از کاربردهای اصلی اعداد اول در مسائل امنیت و ایمنی ارتباطات رایانه ای و به ویژه شبکه های مبادلاتی الکترونیک است. فرض کنید شما یک عدد اول بسیار بزرگ داشته باشید و از آن به عنوان یک کد یا یک امضای الکترونیک استفاده کنید و از عدد غول پیکر اول دیگری نیز به عنوان پاسخ امضاء یا تاییدیه استفاده نمایید. به این دلیل که اعداد اول هیچ توزیع منظمی ندارند بنابراین رمزهایی که بر اساس آن ها ساخته شده باشد به راحتی قابل شکستن نخواهد بود. این انگیزه ی مهمی برای جستجوی اعداد اول بزرگ تر است.بزرگ ترین عدد اول که چهل و سومین عدد مرسن است کشف شد. شبکه رایانه ایGIMPS ( Great Internet Prime Search)عدداول   ۱- ۲۳۰۴۰۲۴۵۷ راکه ۹۱۵۲۰۵۲ رقم دارد کشف کرد.

 

تعریف اعداد اول

عدد طبیعی P>1 را عدد اول می گویند هرگاه تنها مقسوم علیه های مثبت آن 1 و P باشند. به عبارت دیگر یک عدد طبیعی اول است هرگاه جز یک و خودش بر هیچ عدد دیگری بخش پذیر نباشد. هر عدد طبیعی مخالف یک که اول نباشد مرکب یا تجزیه پذیر می گوییم.

به عنوان مثال اعداد 2و3و5و7 اول و اعداد 12و18و325 مرکب می باشند.

لازم به ذکر است که عدد یک نه اول و نه مرکب است و تنها عدد اول زوج عدد 2 است.

اگر n عددی مرکب باشد می توان گفت:

نتیجه: اگر P عددی اول . a و b اعدادی طبیعی باشند، در این صورت:

 

قضیه بنیادی حساب:

هر عدد طبیعی بزرگتر از یک را می توان به صورت یکتایی به صورت حاصل ضرب عوامل اول نوشت. به عبارت دیگر اگر n عددی طبیعی و بزرگتر از 1 باشد: که در آن ها اعداد اول متمایر می باشند. این نمایش را تجزیه عدد n به عوامل اول می گوییم.


دانلود با لینک مستقیم


تحقیق درمورد بزرگترین عدد اول 14 ص