لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 52
فصل اول :
ریاضیات
همواره یکی از علوم فعال و زنده بوده است که براساس منطق استوار می باشد .پایگاه معرفت ریاضی خرد محض است و بر محور احساسات و خواسته ها نمی گردد .میزانی که با آن اندیشه های ریاضی را می سنجیم مستقل از آن اندیشه هاست .
نتایج همگی بر مبنای قوانین و اندیشه های که بر حسب معیارهای قانونی ریاضیات ثابت شده است .ریاضیات همچنین نمادی از تلاش بی پایان انسانها برای کسب دانش و آگاهی است .
دانش ریاضی محصول کوشش انسانها و ملل گوناگون در زمانهای مختلف است که فراتر از زمان و قالبهای فرهنگی و اقلیمی به منصه بروز و ظهور رسیده است .هدف این تلاش ، فعلیت یافتن گوهر وجودی انسان و پیشبرد معرفت و کمال بشری و گشوده شدن دروازه هایی از ارتباط میان اندیشه ها ، فرهنگها و تمدن هابوده است .
اکنون به جواب سؤال مطرح شده از زبان دکتر مصاحب می پردازیم :
جواب این سؤال در زمانهای مختلف و بر حسب بسط ریاضیات و بسط فکر ریاضی متفاوت بوده است .زمانی ریاضیات را علم اعداد ،زمانی علم فضا و زمانی علم کمیات متصل و منفصل تعریف می کردند .این تعریف اخیر که شاید بیش از یک قرن تا حدی قابل قبول بود و هنوز در بعضی اذهان باقی است .
اما طرز فکر کنونی را می توان از این گفته یکی از محققین معاصر دریافت :
((در بابی علم فیزیک ، آشکار شده که ضرورت ندارد که ما ماهیت موجودات مورد بحث را بشناسیم بلکه آنچه ضروری است شناخت ساختمان ریاضی آنهاست .در حقیقت تنها چیزی که می شناسیم همین است ))
نفس ریاضیات در هر مبحث علمی ، خواه در علم اقتصاد یا در علم نجوم ، همین شناسانیدن ساختمان ریاضی است .اینک بد نیست به گفتاری از پرفسور فضل الله رضا در باب ریاضی نو بپردازیم :
در علوم ریاضی نو هم بخلاف ریاضیات قرون پیش ، زیبایی ها کم یا بیش با معیار فربهی خیال و گسترش پرواز سنجیده می شود .وقتی به یکی از امرای علم دوست اسلامی قضیه فیثاغورث را عرضه کردند که مجذور طول وتر مثلث قائم الزاویه برابر مجموع مجذورات طول دو ضلع دیگر است .
معروف است که وی چنان از زیبایی این حقیقت جهانی سرمست شده که دستور داد شکل مثلث را بر روی آستین وی نقش کنند .
A2+b2=c2
این قضیه در قرن بیستم مانند شعرهای نابی که گویندگان بزرگ ایران قرنها پیش آفریده اند از زوایای تنگ مثلث بیرون آمده و به فضاهای بسیار گسترده که در علم و صنعت عمومیت دارند تعمیم داده شد.تعمیم این قضیه در فضاهای هیلبرت که به نام ریاضیدان بزرگ آلمانی قرن نوزدهم معرفی شده است چنان است که برای هر X از فضای هیلبرت و تصاویر بر محورهای پایه مختصات چنین می توان نوشت :
X=x k e k =( x,e)e k
=
هرچند تشخیص معیار از پی زیبا شناسی کار دشواری است با از نظر بحث درمجردات می توان گفت که زیبایی این قضیه پهناور بیش از زیبایی قضیه محدود فیثاغورث است .در اینجا همای خیال بالاتر پرواز کرده مثلث قائم الزاویه معمولی فضای دوبعدی اقلیدسی ، جای خود را در فضایی به ابعاد بی شمار به شکلی داده است که دیگر تصویر ساده در ذهن ما ندارد ، و بر آستین کسی نقش پذیر نیست .
دانلود تحقیق کامل درباره ریاضی چیست 52 ص