لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 28
کاربرد انواع توربین هادر سیستمهای تولید همزمان برق و حرارت
چکیده
تدوین برنامه بلندمدت بهینهسازی بخش عرضه انرژی، تاثیر مثبتی بر اقتصاد کشور و ارتقای نقش ایران در بازارهای جهانی انرژی دارد. از جمله نتایج حاصل از برنامه بهینهسازی بخش عرضه انرژی، بهبود راندمان و کاهش تولید آلایندههای زیست محیطی ناشی از تولید انرژی است. راهکارهای بهینه سازی متعددی در بخش عرضه انرژی مطرح است که از جمله آنها میتوان به تولید همزمان برق و حرارت، سرمایش هوای ورودی به توربینهای گازی، استفاده از توربینهای انبساطی و تعیین ترکیب بهینه در عرضه حاملهای انرژی اشاره نمود. در مطالعه حاضر، برنامه بلندمدت استفاده از واحدهای تولید همزمان برق و حرارت در کشور،که بر اساس حداقل سازی مجموع هزینههای اقتصادی سیستم عرضه انرژی کشور تهیهشده است، از نظر میگذرد. در محاسبه هزینههای اقتصادی سیستم عرضه انرژی، مولفههای سرمایهگذاری، هزینههای بهره برداری و هزینه های سوخت لحاظ شده است.
مقدمه
تولید همزمان برق و حرارت یک روش صرفه جویی انرژی است که در آن برق و حرارت بطور همزمان تولید میشوند. حرارت حاصل از تولید همزمان میتواند بمنظور گرمایش ناحیهای (District heating) یا در صنایع فرآیندی مورد استفاده قرار گیرد.
فرآیند تولید همزمان میتواند بر اساس استفاده از توربینهای گاز، توربینهای بخار یا موتورهای احتراقی بنا نهاده شود و منبع تولید انرژی اولیه نیز شامل دامنه وسیعی است که میتواند سوختهای فسیلی، زیست توده، زمین گرمایی یا انرژی خورشیدی باشد.
گرمایش ناحیهای شامل سیستمی است که در آن حرارت بصورت متمرکز تولید و به تعدادی مشتری فروخته میشود. این کار با استفاده از یک شبکة توزیع که از آب داغ یا بخار بعنوان حامل انرژی حرارتی بهره میبرد، انجام میپذیرد. شکل (1) شمای یک سیستم بازیافت و انتقال حرارت را نشان می دهد.
شکل 1- تجهیزات بازیافت و انتقال حرارت
سابقة تاریخی
اولین سابقه تاریخی استفاده از گرمایش مرکزی به قرنهای سوم و چهارم پیش از میلاد باز میگردد. در آن زمان امپراتوریهای یونان و روم که از نظر فن آوری پیشرفته بودند، برای اولین بار آب گرم خروجی از لایههای آهکی را با حفره کانال به حمامهای عمومی، ورزشگاه، قصرها و قلعههای نظامی منتقل نمودند. در سال 1888 اولین تولید کننده همزمان برق و حرارت در آلمان شروع بکار نمود. در این سال در شهر هامبورگ از حرارت حاصل از تولید برق بمنظور تأمین حرارت تالار شهر (City Hall) استفاده شد. هم اکنون در بسیاری از نقاط جهان از سیستمهای تولید همزمان استفاده میشود. جدول (1) لیست 10 کشور جهان و درصد تأمین حرارت بوسیلة سیستمهای تولید همزمان به نسبت کل حرارت مصرفی در این کشورها را نشان میدهد.
جدول 1- اطلاعات مربوط به 10 کشور استفاده کننده عمده سیستمهای تولید همزمان
به طور کلی میتوان خصوصیات یک سیستم گرمایش ناحیهای را در 6 گروه اصلی دسته بندی نمود.
1-3- ارتقاء کارآیی انرژی
در واحدهای تولید همزمان برق و حرارت، تلفات به حداقل میرسد. بازده کلی این واحدها بین 80 تا 90 درصد خواهد بود، این در حالی است که در یک نیروگاه متداول بازده
حرارتی بین 40 تا 50 درصد است. شکل (2) مقایسه یک نمونه نیروگاه حرارتی معمول و یک واحد CHP و تلفات آنها را نشان میدهد.
2- 3- تأمین حرارت مطمئن و انعطاف پذیری
با توجه به اینکه واحدهای تولید همزمان از حرارت تولیدی نیروگاهها استفاده میکنند، تولید انرژی حرارتی در آنها بدون وقفه انجام میشود. همچنین میزان تولید برق و حرارت، با توجه به تقاضای آنها قابل تغییر است.
3-3- محیط زیست
راندمان بالای واحدهای تولید همزمان، این واحدها را بعنوان راه حلی قابل قبول برای تبدیل انرژی مطرح نموده است. همچنین بازدهی بالای این واحدها، باعث میشود تولید دی اکسید کربن و سایر آلایندهها نظیر ترکیبات گوگردی و اکسیدهای نیتروژن کاهش یابد. از سوی دیگر در کشورهایی که قوانین سخت گیرانه زیست محیطی در آنها اعمال میشود با کاهش تعداد واحدهای تبدیل سوخت به حرارت مفید، کنترل واحدهای تولید آلاینده راحتتر انجام خواهد پذیرفت.
4- 3- هزینههای کمتر
در توجیه پذیری واحدهای CHP باید محدودیتهای مالی را بدقت لحاظ نمود. لازمست در هر ناحیه انرژیهای رقیب با واحدهای تولید همزمان مقایسه و تصمیم گیری بدقت انجام پذیرد. معمولاً واحدهای تولید همزمان به سرمایه گذاری بیشتری نسبت به سیستمهای معمول تبدیل انرژی نیاز دارند. ولی باید دقت داشت که میزان مصرف انرژی در آنها بسیار پایینتر است: بعبارت دیگر، هزینههای متوسط تبدیل یک واحد انرژی در واحدهای CHP پایینتر از سایر روشهاست.
5-3- استفاده هرچه بیشتر از فضای ساختمانها
با استفاده از واحدهای تولید همزمان، تجهیزات نصب شده در تأسیسات گرمایشی ساختمانها کاهش مییابد، به همین دلیل فضای بیشتری در ساختمانها قابل استفاده خواهد بود.
6- 3- هزینههای پایینتر تعمیرات و نگهداری
با توجه به اینکه برای استفاده از حرارت تولیدی در یک واحد تولید همزمان، تجهیزات کمتری در هر ساختمان مورد نیاز است، هزینههای تعمیرات و نگهداری تجهیزات نیز کمتر خواهد شد.
روشهای تولید همزمان
نیروگاههای تولید همزمان را میتوان به پنج دستة کلی تقسیم نمود.
- بازیافت از توربینهای زیرکش دار (Extraction condensing)
- بازیافت از توربینهای پس فشاری (Back – Pressure)
- بازیافت حرارت از توربین های گازی ( (Gas turbine heat recovery
- بازیافت از سیکل ترکیبی (Combined Cycle)
- بازیافت از موتورهای رفت و برگشتی (Reciprocating Engines)
سادهترین نیروگاه تولید همزمان، نیروگاههایی هستند که از توربینهای Back - pressure استفاده میکنند. در ایـن نـیـروگـاهـهـا، برق و حرارت در یک توربین بخار تولید میشود. یکی دیگر از اجزای اصلی نیروگاههای Back - pressure بویلر است که میتواند برای سوزاندن سوختهای جامد، مایع یا گازی شکل طراحی شود.
1-4- نیروگاههای Extraction Condensing (زیر کشدار)
تولید حرارت به روش تولید همزمان میتواند در نیروگاههای مجهز به توربین بخار زیر کشدار (Extraction Condensing) انجام شود. به این طریق که مقداری از بخار قبل از رسیدن به آخرین مرحله توربین از آن خارج شود. گرمایش متمرکز میتواند با استفاده از بخار استخراج شده از توربین یا برای مصارف صنعتی مورد استفاده قرار داد.
شکل (3) چرخه یک نیروگاه بخار که در آن یک ایستگاه کاهش فشار نیز تعبیه شده است را نشان می دهد. از ایستگاه کاهش فشار بخار در مواقعی که از توربین بخار استفاده نشود، استفاده می شود. در این حالت بخار مطمئن برای تأمین حرارت فرآیندها تأمین خواهد شد. باید دقت داشت که در صورتیکه از توربین بخار استفاده نشود به این سیستم تولید همزمان اطلاق نمیشود. در یک نیروگاه معمولی فقط برق تولید میشود ولی دریک نیروگاه Extraction Condensing جزئی از بخار برای تولید حرارت از توربین خارج میشود.
این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
دانلود تحقیق کامل درمورد کاربرد انواع توربین ها در سیستمهای تولید همزمان برق و حرارت