حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله در مورد انتگرال تصادفی

اختصاصی از حامی فایل مقاله در مورد انتگرال تصادفی دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد انتگرال تصادفی


مقاله در مورد انتگرال تصادفی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه67

انتگرال تصادفی: (18)

فرآیند x(t)، انتگرال پذیر MS است اگر     

               (5-39)

قضیه: فرآیند x(t) انتگرال پذیر MS است اگر  (5-40)

نتیجه:            (5-41)                     

فصل ششم: زنجیرهای مارکف:

فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر    آنگاه: (6-1)

 

و اگر  آنگاه:

حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.

تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن  که تعداد Lxn نتیجه آزمایش n ام می نامند.

تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.

احتمالات انتقال: (20)

احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:

(6-3)            

احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.

این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.

تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت.  می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.

هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش
( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق
می کنند:

 

سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:

 

(6-5)

و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:

    (6-6)

نمونه هایی از زنجیره های مارکف: (20)

1) زنجیرهای مارکف همگن: (18)

تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و           (6-7)

که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.

مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.

       (6-8)         

بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.

زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:

یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد

 همچنین و

مشاهداتی مستقل از  باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.

الف) فرآیند  به ازای  را در نظر می گیریم که با  تعریف شده است. ماتریس آن به شکل زیر می باشد. یکسان بودن سطرها مبین آن است که متغیرهای تصادفی  مستقلند.  

ب) رده مهم دیگر از مجموعهای جزئی متوالی  از  ها ناشی می شود. یعنی:

    (6-9)            

فرآیند  یک زنجیر مارکف بوده و ماتریس احتمال انتقال آن به صورت زیر حساب می شود:

(6-10)

که در این محاسبات از فرض استقلال  استفاده شده است.

در حالت کلی ماتریس به صورت

البته می توان فضای حالت را با مجموعه اعداد و صحیح یکی کرد. زیرا در اینصورت ماتریس احتمال اتصال به شکل متقارن تری در خواهد آمد. در این صورت فضای حالت از مقایر ...و2+و1+و0و1-و2-و... تشکیل می شود و ماتریس احتمال انتقال به صورت زیر خواهد بود:

    (6-11)    

2) رفتارهای تصادفی یک بصری: (18)

رفتار تصادفی یک بعدی یک زنجیر مارکف است که فضای حالتش زیر مجموعه ای متناهی مانند a,a+1,a+2,…,b از اعداد صحیح است که در آن ذره، اگر در وضعیت ناباشد، می تواند با یک انتقال یا در نابماند و یا به یکی از وضعیتهای مجاور 1+ iو1-I منتثل شود. قدم زدن تصادفی یک رفتار تصادفی یک بعدی زیرا یک تجسم فرآیند مسیر شخصی که از خود بیخود شده است که به طور تصادفی یک قدم جلو یا عقب بر می دارد را توصیف می کند. در این فرآیند اگر فضای حالت مجموعه اعداد صحیح نامنفی گرفته شود ماتریس اتصال انتقال به شکل روبرو خواهد بود:

    (6-12)    

یعنی هر گاه Xn=I آنگاه به ازای

(6-13)    

فرآیند قدن زدن تصادفی توصیف کننده حرکت ذرات منتشر شده نیز می باشد،


دانلود با لینک مستقیم


مقاله در مورد انتگرال تصادفی
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد