حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره کاربرد آمار و احتمالات در مدیریت تنش

اختصاصی از حامی فایل تحقیق درباره کاربرد آمار و احتمالات در مدیریت تنش دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره کاربرد آمار و احتمالات در مدیریت تنش


تحقیق درباره کاربرد آمار و احتمالات در مدیریت تنش

لینک پرداخت و دانلود *پایین صفحه*

 

فرمت فایل : Word(قابل ویرایش و آماده پرینت)

 

تعداد صفحه : 19

 

فهرست مطالب:

 

مقدمه

شبکه های عصبی مصنوعی

مفاهیم پایه در شبکه های عصبی مصنوعی

شبکه عصبی پرسپترون ساده

شبکه عصبی پرسپترون چند لایه MLP

شرح تحقیق

استفاده از داده‌های ماهیانه

استفاده از داده‌های روزانه

نتیجه‌گیری

فهرست مراجع

 

مقدمه  

         با توجه به اهمیت و حساسیت امر مهار آب‌های سطحی خصوصاً در کشور ما که اکثر رودخانه‌های مناطق مختلف فصلی بوده و کمبود آبی که در پهنه وسیعی از کشور وجود دارد ، نیاز به شناسایی و به مدل در‌آوردن رفتار رودها و شریان‌های آبی جهت برنامه‌ریزی‌های بلندمدت و استفاده بیشتر و بهتر از پتانسیل‌های آنها عمیقاً احساس می‌شود . جدیدالتاسیس بودن بیشتر ایستگاه‌های هیدرومتری ، نواقص موجود در آمار اکثر این  ایستگاه‌ها ، قرارگرفتن بیشتر رودها در مناطق خشک ، وضعیت بحرانی برداشت آب‌های زیرزمینی و لزوم توجه بیشتر به آب‌های سطحی همه‌ و همه دلایل بیشتر و ظریف‌تری می‌باشد که به مقوله پیش‌بینی و تولید آمار مصنوعی‌ در حوزه‌های آبریز کشورمان جلوه و نمودی کامل‌تر می‌بخشد .

       روش‌های متداول آماری و احتمالی بر پایه روابط و فرمول‌های صرفاً ریاضی که به طور اخص به پیش‌بینی سری‌های زمانی می‌پردازد ، از دیرباز مورد توجه مهندسین علوم آب قرار گرفته است . آنها با دست‌مایه قراردادن این بخش از علم آمار به تحلیل ، بررسی و شناخت رفتار رودخانه‌ها می‌پرداختند . در این راستا نرم‌افزارهای  مختلفی نیز تهیه وتنظیم شده که از مهم‌ترین و بارزترین آن‌ها می‌توان SPIGOT  و HEC4  را نام برد .  

       شبکه عصبی مصنوعی[1] نامی نوین در علوم مهندسی است که به‌طور ابتدایی و آغازین درسال 1962 توسط فرانک روزن بلات و در شکل جدی و تأثیرگذار در سال 1986 توسط رومل‌هارت و مک‌کلند با ابداع و ارائه مدل پرسپترون بهبود یافته به جهان معرفی شد . این شیوه از ساختاری نرونی و هوشمند با الگوبرداری مناسب از نرون‌های موجود در مغز انسان سعی می‌کند تا از طریق توابع تعریف شده ریاضی رفتار درون‌سلولی نرون‌های مغز را شبیه‌سازی کند و از طریق وزن‌های محاسباتی موجود در خطوط ارتباطی نرون‌های مصنوعی ، عملکرد سیناپسی را در نرون‌های طبیعی به مدل در آورد. ماهیت و ذات تجربی و منعطف این روش باعث می‌شود تا در مسائلی مانند مقوله پیش بینی که یک چنین نگرشی در ساختار آن‌ها مشاهده می‌شود و از رفتاری غیرخطی و لجام‌گسیخته برخوردار هستند ، به خوبی قابل استفاده باشد .

2- شبکه های عصبی مصنوعی

2-1- مفاهیم پایه در شبکه های عصبی مصنوعی

    یک نرون بیولوژیک با جمع ورودی‌های خود که از طریق دندریت‌ها با یک وزن سیناپسی خاص به نرون اعمال می‌شوند ، با رسیدن به یک حد معین تولید خروجی می‌کند . این حد معین که همان حد آستانه می‌باشد ، در حقیقت عامل فعالیت نرون یا غیر فعال بودن آن است .

    با توضیحات فوق می‌توان گفت که در مدل‌سازی یک نرون بیولوژیک به طور مصنوعی می‌بایست به سه عامل توجه شود :

  • نرون یا فعال است یا غیر فعال
  • خروجی تنها به ورودی‌های نرون بستگی دارد
  • ورودی‌ها باید به حدی برسند تا خروجی ایجاد گردد]1[.

2-2- شبکه عصبی پرسپترون[2] ساده

  فرانک روزن بلات ، با اتصال این نرون‌ها به طریقی ساده پرسپترون را ایجاد و ابداع کرد ، و برای نخستین بار این مدل را در کامپیوترهای دیجیتال شبیه‌سازی و آن‌ها را به طور رسمی تحلیل نمود]1[.

2-3- شبکه عصبی پرسپترون چند لایه ) MLP ( [3]

       در بسیاری از مسائل پیچیدة ریاضی که به حل معادلات بغرنج غیر خطی منجر می‌شود ، یک شبکة پرسپترون چند لایه می‌تواند به سادگی با تعریف اوزان و توابع مناسب مورد استفاده قرارگیرد . توابع فعالیت مختلفی به فراخور اسلوب مسئله در نرون ها مورد استفاده قرار می‌گیرد . در این نوع شبکه‌ها از یک لایة ورودی جهت اعمال ورودی‌های مسئله یک لایة پنهان و یک لایة خروجی که نهایتاً پاسخ‌های مسئله را ارائه می‌نمایند ، استفاده می‌شود.                                

       گره‌هایی که در لایة ورودی هستند ، نرون‌های حسی[4] و گره‌های لایة خروجی ، نرون‌های پاسخ ‌دهنده[5] هستند . در لایة پنهان نیز ، نرون‌های پنهان[6] وجود دارند


 


 


دانلود با لینک مستقیم


تحقیق درباره کاربرد آمار و احتمالات در مدیریت تنش
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد