خیلیب
گویندگی
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 9
فهرست و توضیحات:
پمپ افشانک
افشانک
لوله های برگشت سوخت
پمپ انژکتور اسیابی
طرز کار پمپ انژکتور اسیابی
ساختمان روتور و متعلقات ان در پمپ انژکتور اسیابی
پمپ افشانک
دو نوع پمپ افشانک متداول را پمپ افشانک ردیفی و پمپ افشانک آسیایی می نامند. وظیفه پمپ افشانک تحت فشار قرار دادن گازوئیل برای پودر شدن آن است. برای اشتعال سریع و مطلوب مایع گازوئیل، باید آن را به صورت پودر در فضای احتراق پاشید. برای پودر کردن یک مایع، باید آن را از سوراخ های بسیار ریز گذراند. این سوراخ ها در نوک افشانک (انژکتور) درآورده شده اند. ولی مایع از چنین سوراخ های ریزی رد نخواهد شد مگر اینکه تحت فشار شدید قرار گیرد و این کاریست که پمپ افشانک به عهده دارد. پمپ افشانک ردیفی کتابی شکل بوده، خروجی های آن در یک ردیف و پشت سر هم قرار می گیرند. پمپ افشانک آسیا یی اندامی کوچک تر داشته و کم و بیش استوانه ای شکل است. خروجی های آن حول پوسته کله پمپ، دایره وار درآورده شده اند.
این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
دانلود پاورپوینت حفاری چاه های عمیق و نصب پمپ در آنها 17 اسلاید
پُمپ یا تُلُمبه وسیلهای مکانیکی برای انتقال مایعات است که با افزایش فشار جریان آن، امکان جابجایی مایعات را به ارتفاعی بالاتر (با افزایش هد) یا حتی پایین دست (معمولاً حوضچه یا مخزن) فراهم میآورد.
پمپ کاربردهای فراوان در صنعت و حتی در وسایل نقلیه دارد. مانند پمپ بنزین یا پمپ آب خودرو تا پمپهای بزرگ برای پر کردن حوضچههای تعمیر کشتی.
تعریف پمپ: به طور کلی پمپ به دستگاهی گفته می شود که انرﮊی مکانیکی را از یک منبع خارجی اخذ و به سیال مایعی که از آن عبور می کند، انتقال می دهد. در نتیجه انرﮊی سیال پس از خروج از این دستگاه (پمپ) افزایش می یابد. در پمپ ها تغییرات انرﮊی سیال همواره به صورت تغییر فشار سیال مشاهده می گردد. از پمپها برای انتقال سیال به یک ارتفاع معین و یا جا به جایی آن در یک سیستم لوله کشی و یا هیدرولیک استفاده می نمایند. به عبارت کلی تر از پمپ برای انتقال سیال از یک نقطه به نقطه دیگر استفاده می کنند. پمپها دارای انواع مختلفی هستند که هرکدام دارای کاربرد خاصی می باشند. مهمترین پمپهایی که در این واحد استفاده شده اند عبارتاند از:
پمپهای سانتریفوﮊ: این پمپها از نوعی می باشند که انتقال انرﮊی از آنها به سیال به طور دائمی انجام می پذیرد. پمپهای سانتریفوﮊ معمولاً نیروی محرکه خود را از طریق یک الکترو موتور (موتور الکتریکی) دریافت می کنند. انتقال نیروی محرکه از موتور به پمپ از طریق یک محور به نام شَفت منتقل می شود. شَفت موتور به وسیله نوعی تجهیزات مکانیکی به نام کوپلینگ به شَفت پمپ متصل شده است. به این ترتیب انتقال نیرو به راحتی از طریق شفت موتور الکتریکی به شفت پمپ منتقل می گردد.
پمپ های سانتریفوﮊ دارای یک محفظه هستند که حلزونی شکل است و پوسته یا کِیسینگ نامیده می شود و درون آن یک یا چند چرخ قرار دارند که روی یک محور (شفت) نصب شده اند. هر چرخ مجهز به تعدادی پره می باشد. انتقال انرﮊی به سیال در این قسمت انجام می شود. برای اینکه از محل خروج شفت از کِیسینگ پمپ سیالی خارج نشود و اصطلاحا نشتی به خارج نداشته باشیم از ابزاری به نام مکانیکال سیل استفاده شده است. نکته بسیار مهم در مورد این نوع پمپها هواگیری یا پرایم کردن پمپ پیش از روشن کردن آنها می باشد. یعنی پس از لاین آپ نمودن پمپ و اطمینان از ورود سیال به داخل پمپ، باید از خروج کامل هوا یا گاز حبس شده در داخل پمپ نیز اطمینان حاصل نمود. از این نوع پمپها در ابعاد و اندازه های مختلف برای مصارف گوناگون ساخته می شوند.
پمپهای رفت وبرگشتی: این نوع پمپها وسایلی هستند که انتقال انرﮊی از آنها به سیال به صورت پریودیک و دوره ای می باشد. نیروی محرکه این نوع پمپها نیز غالبا توسط موتورهای الکتریکی تامین می گردد. در این نوع پمپها حرکت چرخشی میل لنگ تبدیل به حرکت رفت و آمدی پیستونی در یک سیلندر می شود. با عقب رفتن پیستون در سیلندر ایجاد مکش شده و در نتیجه مایع از طریق یک شیر ورودی داخل سیلندر می گردد. با حرکت پیستون به طرف جلو دریچه ورودی بسته و مایع از طریق شیر خروجی به خارج هدایت می گردد. شیرهای ورودی و خروجی یکطرفه بوده و طوری ساخته شده اند که در مراحل رفت و آمد پیستون، از ورود مایع داخل سیلندر به قسمت کم فشار و بالعکس ممانعت شود. اگر بجای پیستون، پلانجری در داخل سیلندر رفت و آمد کند در این حالت به آن پمپ پلانجری می گویند. در ضمن چنانچه پلانجر دیافراگمی را حرکت دهد پمپ از نوع دیافراگمی است. فرق میان پیستون وپلانجر در این است که طول سر پیستون کوتاه تر از مسافتی است که پیستون درون سیلندر طی می نماید، در حالی که طول پلانجر بیشتر از طول مسافت طی شده توسط آن در داخل سیلندر می باشد. از طرفی در پمپهای پیستون از حلقه یا رینگی جهت آب بندی پیستون و سیلندر استفاده شده است که روی بدنه پیستون قرار گرفته و همراه آن حرکت می کند، در حالیکه در پمپهای پلانجری این رینگ روی سیلندر قرار دارد و ثابت است. این پمپها معمولاً کم ظرفیت هستند ولی فشار خروجی سیال را می توانند تا مقدار زیادی افزایش دهند. بنابراین از این پمپها در جاهایی که نیاز به جا به جا کردن سیالی با حجم کم ولی فشار بالا می باشد استفاده می کتتد. در ضمن باید به این نکته نیز توجه داشت که جریان سیال در این پمپها به صورت غیر یکنواخت می باشد. نکته بسیار مهم در مورد این پمپ ها آن است که هرگز نباید آنها را در حالیکه شیر خروجی پمپ (دیسچارج پمپ) بسته است روشن نمود
پمپهای چرخ دنده ای یا گی یِر پمپ: این پمپها نوعی از پمپهای گردشی یا روتاری می باشند. پمپ های چرخ دنده ای از دو قسمت متمایز تشکیل شده اند، یکی قسمت جداره ثابت و دیگری قسمت دوار که شامل یک محور گردان با چرخ دنده می باشد. در پمپ های چرخ دنده ای مقداری مایع بین دنده های چرخ دنده پمپ به اصطلاح به تله می افتد و در اثر چرخیدن چرخ دنده ها این مایع به قسمت خروجی پمپ رانده می شود. این پمپ ها به گونه ای ساخته می شوند که در آنها فاصله میان اجزاء گردنده و جداره ثابت بسیار کم می باشد. کار برد این پمپها برای جا به جایی مایع با حجم کم و فشار متوسط می باشد. نکته مهم در مورد این پمپها آن است که هرگز نباید آنها را در حالیکه شیر خروجی پمپ (دیسچارج پمپ) بسته است روشن نمود؛ چرا که در این حالت، اگر هیچ شیر اطمینانی (سِیفتی وَلو) در مسیر دیسچارج پمپ وجود نداشته باشد، یا خود پمپ از بین می رود و یا اینکه لوله دیسچارج می شکند.
کاویتاسیون : این پدیده یکی از خطرناکترین حالتهایی است که ممکن است برای یک پمپ به وجود آید. آب یا هر مایع دیگری، در هر درجه حرارتی به ازای فشار معینی تبخیر می شود. هرگاه در حین جریان مایع در داخل چرخ یک پمپ، فشار مایع در نقطه ای از فشار تبخیر مایع در درجه حرارت مربوطه کمتر شود، حبابهای بخار یا گازی در فاز مایع به وجود می آیند که به همراه مایع به نقطه ای دیگر با فشار بالاتر حرکت می نمایند. اگر در محل جدید فشار مایع به اندازه کافی زیاد باشد، حبابهای بخار در این محل تقطیر شده و در نتیجه ذراتی از مایع از مسیر اصلی خود منحرف شده و با سرعتهای فوق العاده زیاد به اطراف و از جمله پره ها برخورد می نمایند. در چنین مکانی بسته به شدت برخورد، سطح پره ها خورده شده و متخلخل می گردد. این پدیده مخرب در پمپ ها را کاویتاسیون می نامند. پدیده کاویتاسیون برای پمپ بسیار خطرناک بوده و ممکن است پس از مدت کوتاهی پره های پمپ را از بین ببرد.
شامل 34 صفحه فایل word قابل ویرایش
تعریف و تاریخچه هیدرولیک
هیدرولیک از کلمه یونانی " هیدرو " مشتق گردیده است و این کلمه بمعنای جریان حرکات مایعات می باشد.
در قرون گذشته مقصود از هیدرولیک فقط آب بوده و البته بعدها عنوان هیدرولیک مفهوم بیشتری بخود گرفت و معنی ومفهوم آن بررسی در مورد بهره برداری بیشتری از آب و حرکت دادن چرخ های آبی و مهندسی آب بوده است.
مفهوم هیدرولیک در این قرن دیگر مختص به آب نبوده بلکه دامنه وسیعتری بخود گرفته و شامل قواعد و کاربرد مایعات دیگری ، بخصوص " روغن معدنی " میباشد ، زیرا که آب بعلت خاصیت زنگ زدگی ، در صنایع نمی تواند بعنوان انرژی انتقال دهنده مورداستفاده قرار گیرد و بعلت آنکه روغن خاصیت زنگ زدگی دارد ، امروزه در صنایع از آن بخصوص برای انتقال انرژی در سیستم کنترل استفاده بسیار میگردد.
بطور خلاصه میتوان گفت:
فنی که انتقال و تبدیل نیرو را توسط مایعات انجام دهد " هیدرولیک " نامیده میشود.
از آنجائیکه هیدرولیک آبی دارای خاصیت زنگ زدگی است لذا در صنایع از هیدرولیک روغنی هم بخاطر روغن کاری قطعات در حین کار و هم بخاطر انتقال انرژی در سیستم های کنترل استفاده میشود . وقتیکه در صنعت از هیدرولیک نام برده میشود ، مقصود همان " هیدرولیک روغنی " می باشد .
بطور دقیق میتوان گفت که : حوزه کاربرد هیدرولیک روغنی استفاده از انرژی دینامیکی و استاتیکی آن بوده و در مهندسی کنترل برای انتقال زیگنال ها و تولید نیرو می باشد.
وسائل هیدرولیکی که نحوه استفاده هیدرولیک را در صنعت میسر میسازد خود دارای تاریخچه بسیار قدیمی میباشد.
یکی از قدیمی ترین این وسائل ، پمپ های هیدرولیکی بوده ، که برای اولین بار کتزی بیوس یونانی در حدود اواسط قرن سوم قبل از مسیح ، پمپی از نوع پیستون اهرمی که دارای دو سیلندر بود اختراع و ساخته است .
تا اوائل قرن هشتم دیگر در این زمینه وسیله جدیدی پدید نیامد و در اوائل این قرن انواع چرخ های آبی اختراع و رواج بسیار پیدا نمود.
قرن شانزده را میتوان توسعه پمپهای آبی دانست و در این قرن بود که انواع پمپ با ساختمانهای مختلفی پدیدار گردیدند و اصول ساختمانی این پمپ ها ، امروزه بخصوص از نوع چرخ دنده ئی ، هنوز هم مورد توجه و اهمیت بسیاری را دارا می باشد.
در اواخر قرن شانزدهم اصول ساختمان پرس هیدرولیکی طراحی گردیده و حدوداً بعد از یک قرن اولین پرس هیدرولیکی که جنبه عملی داشت ، شروع بکار نمود.
قرن نوزدهم زمان کاربرد پرسهای هیدرولیک آبی بود و اوائل قرن بیستم را میتوان شروع و زمان توسعه هیدرولیکی روغنی در صنایع و تاسیسات صنعتی دانست.
سال 1905 پیدایش گیربکس هیدرواستاتیکی تا فشار 40 بار
سال 1910 پیدایش ماشین های پیستون شعاعی
سال 1922 پیدایش ماشین های شعاعی با دور سریع
سال 1924 پیدایش ماشین های پیستون محوری با محور مایل
سال 1940 پیدایش و تولید انواع مختلف وسائل و ابزار هیدرولیکی برای فشارهائی بیش از 350 بار ، که بعضی از آن وسایل در حال حاضر بطور سری تولید میگردد.
توسعه وسیع و کاربرد هیدرولیک روغنی پس از جنگ جهانی دوم پدید آمد ، ودر اثر همین توسعه ،
بسیاری از قطعات و لوازم هیدرولیک روغنی در حال حاضر بصورت استاندارد شده تولید میگردند.
خواص هیدرولیک روغنی و کاربرد آن در صنایع
استفاده از هیدرولیک روغنی به طراحان ماشین امکانات جدیدی را داده ، که میتوانند به نحو ساده تری ایده و طرح خود را عملی سازند، بخصوص قطعات استاندارد شده هیدرولیک روغنی کمک بسیار جامعی در حل مسائل طراحان مینماید.
امروزه طراح ماشین میتواند با کمک هیدرولیک روغنی مسایل پیچیده کنترل مکانیکی را بنحو ساده تری و در زمان کوتاه تری حل نموده و در نتیجه طرح را با مخازن کمتری عرضه نماید.
خواص مثبت هیدرولیک روغنی
تولید و انتقال نیروهای قوی توسط قطعات کوچک هیدرولیکی ، که دارای وزن کمتری بوده و نسبت وزنی آنها نسبت به دستگاههای الکتریکی 1 به 10 میباشد.
نصب ساده قطعات بعلت استاندارد بودن آنها
تبدیل ساده حرکت دورانی به حرکت خطی اسیلاتوری (رفت و برگشتی)
قابلیت تنظیم و کنترل قطعات هیدرولیکی
امکان سریع معکوس کردن جهت حرکت
استارت حرکت قطعات کار کننده هیدرولیکی ، در موقعیکه زیر بار قرار گرفته باشند.
قابلیت تنظیم غیر پله ئی نیرو ، فشار ، گشتاور، سرعت قطعات کار کننده
ازدیاد عمر کاری قطعات هیدرولیکی در اثر موجودیت روغن در این قطعات
مراقبت ساده دستگاهها و تاسیسات هیدرولیکی توسط مانومتر
امکان اتوماتیک کردن حرکات
در مقابل این خواص مثبت ، البته خواص منفی نیز در هیدرولیک موجود است که طراحان بایستی با آنها نیز آشنا گردند ، البته لازم بتذکر است که بزرگترین خاصیت منفی هیدرولیک ، افت فشار میباشد ، که در حین انتقال مایع فشرده پدید می آید.
خواص منفی هیدرولیک روغنی
خطر در موقع کار با فشارهای قوی ، لذا توجه بیشتری بایستی به محکم وجفت شدن مهره ماسورهها با لوله ها و دهانه تغذیه و مسیر کار قطعات کار کننده نمود
راندمان کمتر مولدهای نیروی هیدرولیکی نسبت به مولدهای نیروی مکانیکی، بعلت نشت فشار روغن و همچنین افت فشار در اثر اصطکاک مایعات در لوله و قطعات
بعلت قابلیت تراکمی روغن و همچنین نشت آن ، امکان سینکرون کردن جریان حرکات بطور دقیق میسر نمی باشد.
گرانی قطعات در اثر بالا بودن مخارج تولید.
کاربرد هیدرولیک امروزه در اغلب صنایع بخصوص صنایع ذیل متداول میباشد:
ماشین ابزار
پرس سازی
تاسیسات صنایع سنگین
ماشین های راه و ساختمان و معادن
هواپیما سازی
کشتی سازی
تبدیل انرژی در تاسیسات هیدرولیکی
انرژی مکانیکی اغلب توسط موتورهای احتراقی و یا الکترو موتورها تولید میگردد، در هیدرو پمپها تبدیل به انرژی هیدرولیکی گشته و این انرژی از طریق وسائل هیدرولیکی به قطعات کار کننده هیدرولیکی منتقل میگردد، واز این قطعات کارکننده میتوان مجددا انرژی مکانیکی را بدست آورد.
هیدرولیک
مایعات تقریباً تراکم ناپذیر هستند. این ویژگی سبب شده است که از مایعات به عنوان وسیله مناسبی برای تبدیل و انتقال کار استفاده شود. بنابراین میتوان از آنها برای طراحی ماشینهایی که در عین سادگی، با نیروی محرک خیلی کم بتواند نیروی مقاوم فوق العاده زیادی را جابجا نماید، استفاده نمود. به این ویژگی و همچنین دانش مطالعه این ویژگی هیدرولیک گفته میشود.
امروزه در بسیاری از فرآیندهای صنعتی ، انتقال قدرت آن هم به صورت کم هزینه و با دقت زیاد مورد نظر است در همین راستا بکارگیری سیال تحت فشار در انتقال و کنترل قدرت در تمام شاخه های صنعت رو به گسترش است. استفاده از قدرت سیال به دو شاخه مهم هیدرولیک و نیوماتیک ( که جدیدتر است ) تقسیم میشود . از نیوماتیک در مواردی که نیروهای نسبتا پایین (حدود یک تن) و سرعت های حرکتی بالا مورد نیاز باشد (مانند سیستمهایی که در قسمتهای محرک رباتها بکار می روند) استفاده میکنند در صورتیکه کاربردهای سیستمهای هیدرولیک عمدتا در مواردی است که قدرتهای بالا و سرعت های کنترل شده دقیق مورد نظر باشد(مانند جک های هیدرولیک ، ترمز و فرمان هیدرولیک و...). حال این سوال پیش میاید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستمهای مکانیکی یا الکتریکی چیست؟در جواب می توان به موارد زیر اشاره کرد: ۱) طراحی ساده ۲) قابلیت افزایش نیرو ۳) سادگی و دقت کنترل ۴) انعطاف پذیری ۵) راندمان بالا ۶) اطمینان در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستمهای مکانیکی قطعات محرک کمتری وجود دارد و میتوان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله ها و شیلنگ ها) صورت میگیرد ولی در سیستمهای مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده میکنند. در این سیستمها میتوان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین میتوان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود. استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستمهای انعطاف پذیری تبدیل میکند که در آنها از محدودیتهای مکانی که برای نصب سیستمهای دیگر به چشم می خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی میتوان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستمها دارد. اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده ای در مورد طرز کار این سیستمها خواهیم پرداخت. برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک میتوان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده میگیرند . بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت میشوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود. اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است. ● قانون پاسکال: ۱) فشار سرتاسر سیال در حال سکون یکسان است .(با صرف نظر از وزن سیال) ۲) در هر لحظه فشار استاتیکی در تمام جهات یکسان است. ۳) فشار سیال در تماس با سطوح بصورت عمودی وارد میگردد. کار سیستمهای نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می کنند . در سیستمهای نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می کنند، البته دمای هوا پس از فشرده شدن بشدت بالا میرود که می تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد. اکنون بعد از آشنایی مختصر با طرز کار سیستمهای هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم. ● اجزای تشکیل دهنده سیستم های هیدرولیکی: ۱) مخزن : جهت نگهداری سیال ۲) پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا ۳) موتور های احتراق داخلی به کار انداخته می شوند. ۴) شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال ۵) عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی). ● اجزای تشکیل دهنده سیستم های نیوماتیکی: ۱) کمپرسور ۲) خنک کننده و خشک کننده هوای تحت فشار ۳) مخزن ذخیره هوای تحت فشار ۴) شیرهای کنترل ۵) عملگرها ● یک مقایسه کلی بین سیستمهای هیدرولیک و نیوماتیک: ۱) در سیستمهای نیوماتیک از سیال تراکم پذیر مثل هوا و در سیستمهای هیدرولیک از سیال تراکم ناپذیر مثل روغن استفاده می کنند. ۲) در سیستمهای هیدرولیک روغن علاوه بر انتقال قدرت وظیفه روغن کاری قطعات داخلی سیستم را نیز بر عهده دارد ولی در نیوماتیک علاوه بر روغن کاری قطعات، باید رطوبت موجود در هوا را نیز از بین برد ولی در هر دو سیستم سیال باید عاری از هر گونه گرد و غبار و نا خالصی باشد ۳) فشار در سیستمهای هیدرولیکی بمراتب بیشتر از فشار در سیستمهای نیوماتیکی می باشد ، حتی در مواقع خاص به ۱۰۰۰ مگا پاسکال هم میرسد ، در نتیجه قطعات سیستمهای هیدرولیکی باید از مقاومت بیشتری برخوردار باشند. ۴) در سرعت های پایین دقت محرک های نیوماتیکی بسیار نامطلوب است در صورتی که دقت محرک های هیدرولیکی در هر سرعتی رضایت بخش است . ۵) در سیستمهای نیوماتیکی با سیال هوا نیاز به لوله های بازگشتی و مخزن نگهداری هوا نمی باشد. ۶) سیستمهای نیوماتیک از بازده کمتری نسبت به سیستمهای هیدرولیکی برخوردارند.
جک هیدرولک
دید کلی
مایعات تقریبا تراکم ناپذیر هستند. این ویژگی سبب شده است که از مایعات به عنوان وسیله مناسبی برای تبدیل و انتقال کار استفاده شود. بنابراین میتوان از آنها برای طراحی ماشینهایی که در عین سادگی ، با نیروی محرک خیلی کم بتواند نیروی مقاوم فوق العاده زیادی را جابجا نماید، استفاده نمود.
جک هیدرولیک چیس