حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق و مقاله سیستم های ارتباطی فرکانس رادیویی در معادن زیرزمینی (فرمت Word ورد doc)

اختصاصی از حامی فایل تحقیق و مقاله سیستم های ارتباطی فرکانس رادیویی در معادن زیرزمینی (فرمت Word ورد doc) دانلود با لینک مستقیم و پر سرعت .

تحقیق و مقاله سیستم های ارتباطی فرکانس رادیویی در معادن زیرزمینی (فرمت Word ورد doc)


 تحقیق و مقاله  سیستم های ارتباطی فرکانس رادیویی در معادن زیرزمینی (فرمت Word ورد doc)

این مقاله در مورد تکنیک های ارتباطی فرکانس رادیویی مختلف به کار گرفته شده در معادن زیرزمینی هند است. معادن زیرزمینی، به عنوان محیط هایی با شرایط کاری سخت و خطرناک شناخته می شوند. بنابراین به سیستم های ارتباطی هوشمند معدن عریض برای عملکرد روان معدن و اطمینان از ایمنی بهتر نیاز است . سیستم های ارتباطی مناسب و قابل اعتماد فقط برای صرفه جویی درزمان نیست ؛ بلکه در فرستادن فوری پیام از مجاورت منطقه کار زیرزمینی به سطح زمین برای عملیات سریع نجات کمک می کند .همچنین یک سیستم ارتباطی قابل اعتماد و موثر است برای ایمنی درمعادن زیرزمینی لازم است و ضروری است. همه سیستم های موجود بایه گذاری شده بر اساس ارتباطی خط (سیمی) اند، از این رو قادر به مقاومت در برابر در شرایط حادثه و همچنین توانمند در مکان های غیر قابل دسترس نیستند. توپولوژی معادن غیر متقارن و معادن با ساختار پیچیده موانع بیشتری در راه های ارتباطی قرار داده است. بنابراین، ارتباطات بی سیم اجتناب ناپذیربوده و قابل اعتماد ترین ومناسب ترین سیستم است و باید برای مقابله با حوادث غیرمترقبه وجود داشته باشد.فرستنده ها و گیرنده های فرکانس (FM)با آنتن وابسته به هدایت و یا آنتن فعال متصل به کابل فیدر سوراخ دارو تقویت کننده های تکرار کننده در فواصل منظم می تواند برای عملکرد سیستم های ارتباطی گسترده، قابل اعتماد و مناسب استفاده شود. فرستنده وگیرنده ای قابل حمل طوری ساخته می شوند که می توان آن را حتی در مکان های غیر قابل دسترس معادن زیرزمینی استفاده کرد . بطور خلاصه ارتباطات آر اف مناسب ترین و قابل اعتمادترین سیستم ارتباطی برای کار ایمن در معادن زغال سنگ است .همچنین برای افزایش تولید و بهره وری در معادن کمک میکند..

فهرست :

چیکده

تکنیک های ارتباطی

ارتباط محور

ارتباطات راهروهای مستقیم

ارتباطات معدن شبکه ای

ارتباطات معدنچی محبوس

توسعه و آزمایش میدانی

آزمون های میدانی

نتیجه گیری

منابع


دانلود با لینک مستقیم


تحقیق و مقاله سیستم های ارتباطی فرکانس رادیویی در معادن زیرزمینی (فرمت Word ورد doc)

پایانامه طراحی و شبیه¬سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

اختصاصی از حامی فایل پایانامه طراحی و شبیه¬سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی دانلود با لینک مستقیم و پر سرعت .

پایانامه طراحی و شبیه¬سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی


پایانامه طراحی و شبیه¬سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

شلینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:34

فهرست و توضیحات:

                                                                                                                        1

فصل1: مقدمه       2

  ۱-۱  طرح مسئله            2

  ۲-۱  اهداف تحقیق           ۳

  ۳-۱  معرفی فصل های مورد بررسی در این تحقیق     ۴

فصل2: انرژی باد و انواع توربین های بادی    ۵

  ۱-۲  انرژی باد ۶

      ۱-۱-۲  منشا باد         ۶

      ۲-۱-۲  پیشینه استفاده از باد      ۷

      ۳-۱-۲  مزایای انرژی بادی      ۸

      ۴-۱-۲  ناکارآمدیهای انرژی بادی           ۹

      ۵-۱-۲  وضعیت استفاده از انرژی باد در سطح جهان           ۱۰

  ۲-۲  فناوری توربین های بادی       ۱۱

      ۱-۲-۲  توربینهای بادی با محور چرخش افقی        ۱۲

      ۲-۲-۲  توربینهای بادی با محور چرخش عمودی    ۱۲

      ۳-۲-۲  اجزای اصلی توربین بادی          ۱۴

      ۴-۲-۲  چگونگی تولید توان در سیستم های بادی     ۱۵

          ۱-۴-۲-۲  منحنی پیش بینی توان توربین باد       ۱۵

  ۳-۲  تقسیم بندی سیستم های تبدیل کننده انرژی باد (WECS)  بر اساس نحوه عملکرد         ۲۰

      ۱-۳-۲  سیستم های تبدیل کننده انرژی باد (WECS)  سرعت ثابت     ۲۰

      ۲-۳-۲  سیستم های تبدیل کننده انرژی باد (WECS)  سرعت متغیر    ۲۲

      ۳-۳-۲  سیستم های تبدیل کننده انرژی باد بر مبنای ژنراتور القایی با تغذیه دوگانه (DFIG)          ۲۴

      ۴-۳-۲  سیستم های تبدیل کننده انرژی باد مجهز به توربین های سرعت متغیر با مبدل  فرکانسی با ظرفیت کامل         ۲۶

فصل۳: تاریخچه کنترل فرکانس سیستم های قدرت در حضور واحدهای بادی، معرفی مدل ریاضی و الگوریتم ازدحام ذرات  ۲۷

  ۱-۳  مرورری بر کارهای انجام شده           ۲۹

  ۲-۳  کنترل DFIG        ۳۳

  ۳-۳  مدل دینامیکی سیستم تنظیم فرکانس توربین بادی با ژنراتور القایی تغذیه دوگانه            ۳۶

  ۴-۳  مدل دینامیکی ساختار تنظیم فرکانس سیستم تک ناحیه ای در حضور توربین بادی با ژنراتور القایی تغذیه دوگانه (DFIG)    ۴۰

  ۵-۳  الگوریتم حرکت گروهی پرندگان یا ازدحام ذرات PSO     ۴۴

  ۶-۳  نتیجه گیری            ۴۷

فصل۴: طراحی کنترل کننده PI بهینه سازی شده توسط الگوریتم ازدحام ذرات          ۴۸

  ۱-۴  بهینه سازی طراحی کنترل‌کننده PI با استفاده از روش بهینه سازی هوشمند ازدحام ذرات (PSO)            ۴۹

      ۱-۱-۴  نتایج شبیه سازی کنترل کننده PI بهینه سازی شده با الگوریتم PSO     ۵۳

۴-۲  نتیجه گیری  ۵۹

فصل پنجم: طراحی کنترل کننده فازی ۶۱

  ۱-۵  منطق فازی            ۶۲

      ۱-۱-۵  تعریف مجموعه فازی    ۶۲

      ۲-۱-۵  مزایای استفاده از منطق فازی      ۶۳

۵-۲  طراحی کنترل کننده فازی        ۶۴

      ۱-۲-۵  ساختار یک کنترل کننده فازی      ۶۴

          ۱-۱-۲-۵  فازی کننده          ۶۵

          ۲-۱-۲-۵  پایگاه قواعد         ۶۶

          ۳-۱-۲-۵  موتور استنتاج     ۶۶

          ۴-۱-۲-۵  غیر فازی ساز     ۶۷

  ۳-۵  طراحی کنترل‌کننده فازی بهینه شده با الگوریتم PSO        ۶۸

      5-3-1  نتایج شبیه سازی          ۷۲

فصل ششم: نتیجه گیری و پیشنهادات  78

  ۱-۶ نتیجه گیری ۷۹

  ۲-۶  پیشنهادات  ۸۱

           

           

           

 

فهرست جدول¬ها

 

جدول ۱-۲: انواع توربین های عرضه شده در بازار       ۱۱

جدول ۴-۱: اطلاعات شبیه سازی      ۵۱

جدول ۲-۴: پارامترهای انتخابی الگوریتم PSO ۵۳

جدول ۳-۴: اطلاعات شبیه سازی      ۵۳

جدول ۱-۵: پارامترهای انتخابی الگوریتم PSO ۷۳

جدول ۲-۵: پارامترهای بهینه شده کتترل کننده فازی با الگوریتم PSO        ۷۳

 

فهرست شکل¬ها

 

شکل ۱-۲ : تولید باد           ۶

شکل ۲-۲: وسیله ای بر اساس طرح ایرانیان به منظور استفاده از انرژی باد [۱۰‍]     ۷

شکل ۳-۲: ساختمان توربین بادی محور افقی [۱۱‍‍]         ۱۳

شکل ۴-۲: توربین بادی نوع داریوس (محور عمودی) [۱۱]         ۱۳

شکل ۵-۲: نمایی از یک سیستم تبدیل انرژی بادی در توربین بادی با محور افقی [۱‍]  ۱۴

شکل ۶-۲: دیاگرام سیستم بادی [۲]    ۱۵

شکل ۷-۲: منحنی توان-سرعت باد یک توربین بادی زاویه گام قابل تنظیم ۱۵۰۰ کیلوواتی با سرعت قطع خروجی ۲۵ متربرثانیه [۲‍] ۱۶

شکل ۸-۲ : نمودار تغییرات   بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]      ۱۸

شکل ۹-۲:  نمودار تغییرات   بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام متغیر [۱]      ۱۹

شکل ۱۰-۲: نمودار تغییرات   و   بر حسب تغییرات زاویه گام و نسبت سرعت نوک برای توربین بادی زاویه گام ثابت ‌[۱] ۲۰

شکل ۱۱-۲: توربین بادی سرعت ثابت           ۲۱

شکل ۱۲-۲: آرایشی از توربین بادی با سرعت متغیر محدود با مقاومت متغیر رتور   ۲۳

شکل ۱۳-۲: ساختمان توربین بادی نوع DFIG            ۲۵

شکل ۱-۳: نمایی از عملکرد سیستم تبدیل انرژی باد       ۳۴

شکل ۲-۳: ساختار کنترل کننده توربین بادی DFIG  [۳۰]         ۳۵

شکل ۳-۳: مدل دینامیکی سیستم قدرت تک ناحیه ای در حضور واحدهای تولید غیر سنتی (بادی)[۳۰]    ۳۶

شکل ۴-۳: مدل دینامیکی توربین بادی دارای ژنراتور DFIG  به منظور تنظیم فرکانس[۳۰]   ۳۷

شکل ۵-۳: بلوک دیاگرام سیستم تنظیم فرکانس سیستم قدرت تک ناحیه ای در حضور توربین بادی DFIG [۳۰]   ۴۱

شکل ۶-۳: شماتیک برداری روابط الگوریتم PSO        ۴۵

شکل ۷-۳: فلوچارت الگوریتم PSO  ۴۶

شکل ۱-۴: سیستم حلقه بسته ۵۰

شکل ۲-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI کلاسیک  به ازای تغییر بار  ،  و 

۵۱

شکل ۳-۴: سیستم حلقه بسته با اضافه کردن انتگرال مربع خطا     ۵۲

شکل ۴-۴: نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه به ازای تغییر بار  ،  و 

۵۴

شکل ۵-۴: مقایسه نمودار تغییرات سرعت توربین بادی- زمان برای کنترل‌کننده PI بهینه و کلاسیک به ازای تغییر بار  

۵۵

شکل 6-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار 

۵۶

شکل7-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار 

۵۶

شکل 8-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI  کلاسیک برای کنترل سرعت توربین بادی به ازای تغییر بار 

۵۷

شکل 9-۴: نمودار فرکانس با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار 

۵۷

شکل ۱0-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI کلاسیک برای کنترل سرعت توربین بادی            ۵۸

شکل ۱1-۴: تغییرات توان تولید شده توسط واحدهای بادی با در نظر گرفتن کنترل کننده PI بهینه برای کنترل سرعت  توربین بادی   ۵۹

شکل ۱-۵: نمایی از یک کنترل کننده فازی        ۶۵

شکل ۲-۵: مثال هایی از توابع عضویت: (a) تابع z ،  (b) گوسین، (c) تابع s، (d-f) حالتهای مختلف مثلثی، (g-i) حالتهای مختلف ذوزنقه ای، (j) گوسین تخت،(k)  مستطیلی، (l) تک مقداری        ۶۵

شکل ۳-۵: تابع عضویت خطا           ۶۹

شکل ۴-۵: تابع عضویت مشتق خطا   ۶۹

شکل ۵-۵: نمودار تغییرات سرعت توربین بادی برای کنترل کننده PI بهینه به ازای تغییر بار 

۷۲

شکل ۶-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش  

۷۴

شکل ۷-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش  

۷۴

شکل ۸-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش  

۷۵

شکل ۹-۵: نمودار تغییرات سرعت توربین بادی با کنترل کننده فازی بهینه شده با الگوریتم PSO به ازای ورودی  اغتشاش  

۷۵

شکل ۱۰-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار 

۷۶

شکل ۱۱-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار 

۷۶

شکل ۱۲-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار 

۷۷

شکل ۱۳-۵: نمودار فرکانس با در نظر گرفتن کنترل کننده فازی بهینه برای کنترل سرعت توربین بادی به ازای تغییر بار 

۷۷

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

چکیده

امروزه با توجه به نیاز روزافزون بشر به انرژی از یک سو و کاهش منابع سنتی انرژی از سویی دیگر، نیاز به یافتن منابع جدید انرژی به روشنی احساس می گردد. جایگزینی منابع فسیلی با انرژی های نو و تجدیدپذیر راهکاری است که مدت هاست مورد توجه کشورهای پیشرفته جهان قرار گرفته است. در بین منابع انرژی های نو، انرژی باد به دلیل پاک و پایان ناپذیر بودن، داشتن قابلیت تبدیل به انرژی الکتریکی و رایگان بودن گزینه مناسبی برای این منظور می باشد. مشکل عمده در بهره برداری از آن این است که تغییرات لحظه ای سرعت باد باعث ایجاد نوسانات در توان خروجی توربین بادی می شود که این نوسانات به شکل تغییر فرکانس در سرتاسر سیستم منعکس می شود و عملکرد سیستم را تحت تاثیر قرار می دهد. به صورت سنتی وظیفه کنترل فرکانس به عهده واحد های تولید کننده انرژی سنتی می باشد اما با افزایش مشارکت واحدهای تولید بادی در تولید انرژی برای بهبود عملکرد سیستم، آنها نیز باید در کنترل فرکانس شرکت کنند.

این پایانامه به بررسی نقش مشارکت واحدهای تولید بادی درکنترل فرکانس پرداخته است و برای کنترل فرکانس، کنترل هر چه بهتر تغییرات سرعت توربین های بادی پیشنهاد شده است. ابتدا سیستم قدرت مورد نظر با استفاده از کنترل کننده PI کلاسیک برای کنترل کردن سرعت ژنراتور توربین بادی شبیه سازی شده و در ادامه به منظور بهبود عملکرد سیستم، بهینه سازی تنظیم پارامترهای کنترل کننده PI  با الگوریتم بهینه سازی هوشمند ازدحام ذرات پیشنهاد شده است. در پایان به علت اینکه سیستم های قدرت در حضور واحدهای بادی در معرض تغییر پارامترها و عدم قطعیت های زیادی قرار می گیرند جایگزینی کنترل کننده PI با کنترل کننده فازی پیشنهاد شده است که غیر خطی می باشد و عملکرد مقاومتری نسبت به تغییر پارامترهای سیستم از خود نشان می دهد. بدیهی است با بهینه سازی کنترل کننده فازی مورد نظر با الگوریتم بهینه سازی هوشمند ازدحام ذرات نتایج مطلوب تری بدست می آید.

 

کلید واژه: کنترل فرکانس سیستم قدرت- سیستم های تبدیل کننده انرژی باد- کنترل کننده PI – کنترل کننده فازی- الگوریتم ازدحام ذرات

 

 

 

فصل اول

مقدمه

 


دانلود با لینک مستقیم


پایانامه طراحی و شبیه¬سازی کنترل‌کننده‌های هوشمند بهینه برای کنترل بار فرکانس توربین‌های بادی

جداسازی سیگنال با استفاده از تبدیلات حوزه زمان فرکانس به همراه مقاله شبیه سازی شده

اختصاصی از حامی فایل جداسازی سیگنال با استفاده از تبدیلات حوزه زمان فرکانس به همراه مقاله شبیه سازی شده دانلود با لینک مستقیم و پر سرعت .

جداسازی سیگنال با استفاده از تبدیلات حوزه زمان فرکانس به همراه مقاله شبیه سازی شده


جداسازی سیگنال با استفاده از تبدیلات حوزه زمان فرکانس به همراه مقاله شبیه سازی شده

جداسازی سیگنال با استفاده از تبدیلات حوزه زمان فرکانس به همراه مقاله شبیه سازی شده

سیگنال های مرجع با استفاده از این تبدیلات فرکانس سیگنال اولیه از فرکانس های مراتب بالاتر جداسازی و نمایش داده می شود و با استفاده از رویتگر سیگنال تخمین زده شده و جداسازی انجام می گردد.

مقاله رفرنس:

386 IEEE SIGNAL PROCESSING LETTERS, VOL. 11, NO. 3, MARCH 2004
Two Contributions to Blind Source Separation Using
Time–Frequency Distributions
Cédric Févotte and Christian Doncarli

 

 


دانلود با لینک مستقیم


جداسازی سیگنال با استفاده از تبدیلات حوزه زمان فرکانس به همراه مقاله شبیه سازی شده

بررسی جامع کاربرد کنترل کنند های دور موتور فرکانس اینورتور VFD در صرفه جویی انرژی

اختصاصی از حامی فایل بررسی جامع کاربرد کنترل کنند های دور موتور فرکانس اینورتور VFD در صرفه جویی انرژی دانلود با لینک مستقیم و پر سرعت .

بررسی جامع کاربرد کنترل کنند های دور موتور فرکانس اینورتور VFD در صرفه جویی انرژی


بررسی جامع کاربرد کنترل کنند های دور موتور فرکانس اینورتور VFD در صرفه جویی انرژی

بررسی جامع کاربرد کنترل کنند های دور موتور فرکانس اینورتور VFD در صرفه جویی انرژی.

فهرست مطالب  (مصرف انرژی در الکترو موتور ها . انتخاب موتور مناسب. روش علمی برای افزایش بازدهی .درایور های ولتاژ مناسب. کنترل کننده های دور موتورVFD.تکنولوژِی الکترونیک قدرت و درایورهای AC)

این مطالب به صورت Word میباشد.

 


دانلود با لینک مستقیم


بررسی جامع کاربرد کنترل کنند های دور موتور فرکانس اینورتور VFD در صرفه جویی انرژی

پاورپوینت ترجمه مقاله ISI بررسی اثر فرکانس زلزله بر رفتار لرزه ای دیوار حائل طره از جمله اندرکنش خاک و سازه

اختصاصی از حامی فایل پاورپوینت ترجمه مقاله ISI بررسی اثر فرکانس زلزله بر رفتار لرزه ای دیوار حائل طره از جمله اندرکنش خاک و سازه دانلود با لینک مستقیم و پر سرعت .

پاورپوینت ترجمه مقاله ISI بررسی اثر فرکانس زلزله بر رفتار لرزه ای دیوار حائل طره از جمله اندرکنش خاک و سازه


پاورپوینت ترجمه مقاله ISI بررسی اثر فرکانس زلزله بر رفتار لرزه ای دیوار حائل طره از جمله اندرکنش خاک و سازه -2012

پاورپوینت ترجمه مقاله ISI بررسی اثر فرکانس زلزله بر رفتار لرزه ای دیوار حائل طره از جمله اندرکنش خاک و سازه به صورت روان و تخصصی ترجمه شده و 19 صفحه ارائه شده که شامل بخش های زیر می باشد:

معرفی

تعریف مسئله 

مدل سازی المان محدود

 کاربرد عددی و تایید مدل

آنالیز لرزه ای

نتیجه گیری

 

بخشی از پاورپوینت:

معرفی:

 روش های موجود که برای آنالیز لرزه ای دیوارهای حائل استفاده شده است می تواند به راحتی به سه دسته اصلی طبقه بندی  شود: (1) روشی که روش های سنتی توسعه یافته است برای تایید رفتار ژئوتکنیکی و سازه ای دیوارها، که در آن حرکت نسبی دیوار و مصالح  برای اعمال وضعیت حدی یا شکست  خاک  خیلی بزرگ هستند، (2) روشی که در آن دیوار، اساسا صلب وحرکت زمین شدت کمی دارد به طوری که ترانشه با فرض  روش الاستیک خطی پاسخ داده است، (3) روشی که در آن  رفتار خاک به عنوان یک، ماده  غیر خطی است.

دسته سوم ، روش المان محدود است که معمولا  در تجزیه و تحلیل سیستم های خاک و دیوار استفاده می شود. هدف از این مقاله سه مورد است: (الف)  یک مرور مختصری از مسئله، به منظور ارائه جزئیات سیستم  مدل المان محدود تحت بررسی، (ب) بررسی اعتبار آن با فرضیات پایه ثابت و خاک الاستیک از طریق پیشنهاد مدل تحلیلی، (ج)  برای تحقیقات بیشتر رفتار لرزه ای دیوار های طره اثرات اندرکنش خاک و سازه و مقدارفرکانس زلزله در نظر گرفته می شود.

تعریف مسئله :

مسئله در دست بررسی، از یک لایه یکنواخت با مواد الاستیک تشکیل شده که، در سطح فوقانی آن به صورت آزاد ، قید شده به پایه صلب تغییرشکل ناپذیر و همراه یکی از  مرزهای عمودی آن توسط دیوار های طره یکنواخت که در پایه ثابت و در بالا آزاد فرض شده، حفظ می شود. . ارتفاع دیوار و قشر خاک یکسان در نظر گرفته شود. در آنالیزها خاک خشک ناپیوسته در نظر گرفته می شود. طرح سیستم دیوار طره ترانشه مورد آزمایش در شکل 1 نشان داده شده است....

 

به شما اطمینان می دهیم که این پاورپوینت خواسته شما را برآورده می کند و مناسب پروژه های کارشناسی ارشد است. با پرداخت مبلغ و خرید این فایل، لینک محصول را در ایمیل خود دریافت می کنید. مطمئن باشید ارزش این فایل خیلی بیشتر از مبلغی است که پرداخت می کنید.

 

 

 


دانلود با لینک مستقیم


پاورپوینت ترجمه مقاله ISI بررسی اثر فرکانس زلزله بر رفتار لرزه ای دیوار حائل طره از جمله اندرکنش خاک و سازه