حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حامی فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پاورپوینت آشنایی با سیاره زحل

اختصاصی از حامی فایل پاورپوینت آشنایی با سیاره زحل دانلود با لینک مستقیم و پر سرعت .

پاورپوینت آشنایی با سیاره زحل


پاورپوینت آشنایی  با سیاره زحل

فرمت فایل : power point  (قابل ویرایش) تعداد اسلاید  : 17 اسلاید

 

 

 

مقدمه

زحل ششمین سیاره از منظومه شمسی است و از جنبه‌های زیادی شبیه مشتری است، جز اینکه در اطراف آن چندین حلقه شگفت انگیز وجود دارد.


دانلود با لینک مستقیم


پاورپوینت آشنایی با سیاره زحل

دانلود مقاله دنده های خورشیدی یا سیاره ای در جعبه دنده ها

اختصاصی از حامی فایل دانلود مقاله دنده های خورشیدی یا سیاره ای در جعبه دنده ها دانلود با لینک مستقیم و پر سرعت .

 

 

مجموعه دنده های خورشیدی در اوایل قرن حاضر در اتومبیلهای آمریکایی بکار رفته است و آنها در زمره کار برد اولین نوع دنده ها در جعبه دنده های اتومبیل های سواری و کامیونهای سبک بودند و بدلیل داشتن مزیت برای راننده هنگام دنده ها کاربرد آن پیشنهاد گردید . در صور تیکه در جعبه دنده های لغزشی معمولی که هنوز سنگرونیزه نشده بودند احتیاج به یک راننده ماهری داشت که تعویض دنده ها را در حین حرکت انجام دهد . در این شرایط جعیه دنده های خورشیدی دو سرعته با یک دنده عقب بطور انحصاری طراحی می گردید و در کادیلاک 1906 جعبه دنده خورشیدی 3 ساعته بکار برده شد که طراحی آنها خالی از اشکال نبود و به فکر استفاده از دنده پینیونها بوش دار بودند تا از صدا کردن دنده ها جلوگیری شود .
همزمان پیشرفتهایی در طراحی جعبه دنده های معمولی انجام گردید و تقریباً بطور جامع از آنها در اتومبیلهای سواری و کامیونها اتسافده می گردید و سپس بسوی طراحی مجموعه دنده های خورشیدی سوق داده شدند و در اتومبیل فورد مدل تی (T ) تا سال 1928 از جعبه دنده خورشیدی استفاده می گردید . جعبه دنده های خورشیدی که به صحنه آمده بود با تولید جعبه دنده خودکار اور درایو توسط بورگ وارنر و جعبه دنده اتوماتیک هیدراماتیک توسط جنرال موتور افت فاحشی نمود و دوباره تحقیق و توسعه در مورد دنده های مار پیچ ،آلیاژ های فولاد ،برطرف نمودن گرمای فلزات و یاتاقانهای سوزنی و حذف کردن تعدادی از نواقص انواع اخیر جعبه دنده های خورشیدی آغاز گردید .
جعبه دنده های خورشیدی امروزه کاربرد وسیعی دارند . تنوع جعبه دنده های اتوماتیک در اتومبیلهای سواری و کامیونها و کاربرد در فرمانها ، گرداننده نهایی (دیفرانسیل) و چرخهای متحرک ماشین آلات ساختمانی و کاهش دهنده هایی ماننند محرکهای ملخ دار در هواپیما و یا محرک پروانه کشتی و غیره را دارا می باشد و موارد فوق تعدادی از نمونه های کاربرد دنده های خورشیدی در انتقال قدرت می باشند .
مجموعه خورشیدی یا مجموعه دنده های سیاره ای
قلب جعبه دنده های اتوماتیک سیستم دنده های خورشیدی است . بنابراین لازم است تا مروری بر ساختمان اساسی یک مجموعه خورشیدی ساده را داشته باشیم و بطور مقدمه طرز کار دنده های خورشیدی بیان می گردد .
یک مجموعه خورشیدی یا سیاره ای مطابق شکل های 1-1 و 1-2 شامل یک دنده خورشیدی یا دنده مرکزی است که احاطه شده است با دنده های هرز گرد سیاره ای با پینیونها که روی محور نگهدارنده بطور انفرادی در حامل سیاره ای یا قفسه قرار گرفته و حرکت دورانی می کنند و به طور دائم درگیر می باشند و قفسه در داخل دنده داخلی یا رینگی (به این دلیل به این نام خوانده می شود که محیط دایره از داخل دندانه دار شده است ) احاطه شده و ب طور دائم با پینیونهای دنده های سیاره ای درگیر می باشند .
مجموعه دنده های خورشیدی یا سیاره ای که نامش از عمل دنده های پینیون سیاره ای گرفته شده است قادرند تا دور محورشان بچرخند و همزمان اطراف دنده خورشیدی دوران نمایند مانند گردش زمین که هم به دور خودش و هم اطراف کره خورشید دوران می نماید . با مطالعه اشکال 1-1و 1-2 به چند مزیت مهم در دنده های خورشیدی پی می بریم .
1- تمام اعضاء مجموعه خورشیدی در یک محور اصلی شریک هستند و در نتیجه همه آنها در یک مجموعه قرار گرفته اند .
2- دنده های خورشیدی همیشه بطور ثابت با هم درگیری می باشند و امکان حذف دندانه و یا شکستن و سرو صدا کمتر وجود دارد و هم چنین تعویض نسبت دنده سریع و بطور خودکار بودن افت قدرت انجام می گیرد .
3- دنده های خورشیدی نسبت به جعبه دنده های استاندارد می توانند سختر و قویتر باشند و بارهای گشتاوری را بطور وسیع جابجا یا انتقال نمایند و دارای حجم کمتری می باشند به این دلیل که بار گشتاوری از میان دنده های سیار ه ای عبور می نماید و نیرو به چند دنده سیاره ای که تعداد دنده های درگیر انها بیشتر می باشد تقسیم می گیردد و در نتیجه قدرت انتقال افزایش می یابد .
4- موقعیت اعضاء مجموعه سیاره ای برای نگه داشتن یا درگیری و قفل نمودن آنها با یکدیگر برای تعویض نسبت دنده ها نسبت به هم رابطه ساده ای دارند .

 

تعاریف
وقتی که یک سری چرخ دنده با هم به صورت ساده و یا ترکیب شده و یا مانند سیستم خورشیدی در حال گردش می باشند لازم است تا بعضی از اصلاحات را در مورد توضیح چگونگی کار و تاثیر انها بر مسیر قدرت عنوان گردد . بنابراین مروری داریم بر تعاریف درگیری دنده که در مورد وظیفه و عملکرد مجموعه خورشیدی ضروری می باشد .
نسبت دنده : با چرخش چرخ دنده ورودی می توان دورهای چرخ دنده ورودی 3 دور و تعداد دوران چرخ دنده خروجی یک دور باشد نسبت دنده 1: 3 خواهد بود .
کاهش دنده : نسبت کاهش دنده باعث می شود که در این حالت گشتاور افزایش دور کاهش یابد . به عنوان مثال در مورد یک نسبت دنده 1:3 اگر گشتاور ورودی 180 فوت – پوند و دور ورودی 2700 در دقیقه تغییر می یابد . (ضایعات و تلفات اصطکاکی که همیشه وجود دارد محسوب نگردیده است ) .
اوردرایو یا فوق سرعت : اینحالت بر عکس اثر نسبت کاهش دنده عمل می کند ، عامل نسبت دنده باعث می شود که گشتاور کاهش و دور افقزایش یابد . در یک نسبت دنده 1:3 اگر گشتاور ورودی 180فوت – پوند و دور ورودی 2700 در دقیقه باشد گشتاور خروجی به 60 فوت – پوند و دور خروجی 8100 دور در دقیقه تغییر خواهد یافت .
حرکت مستقیم :
نسبت دنده 1:1 و بدون تغییر در گشتاور و دور ورودی می باشد .
خلاص یا آزادگردی :
در این حالت قدرت ورودی وجود دارد ولی قدرت از جعبه دنده خارج نمی گردد .عضو عکس العملی : در مجموعه خورشیدی اساس حالت انتقال با ثابت بودن یکی از اعضاء مجموعه می باشد که این عمل توسط وسایل اصطکاکی مانند نوارهای ترمز یا باند کلاچهای دیسکی چند صفحه ای و کلاچ یکطرفه انجام می گیرد که در فصل بعدی مورد آنها بحث خواهد گردید .
قوانین طرز کار دنده های خورشیدی :
طرز کار دند های خورشیدی توسط پنج قانون اساسی که در واقع کلید آگاهی در مورد مسیرهای مختلف اعمال قدرت در تمام دنده های اتوماتیک می باشند بیان می گردد و آنها عبارتند از :حالت خلاص ، کاهش دنده ،اوردرایو،حرکت مستقیم و دنده عقب که بترتیب هر یک را مورد بررسی قرار می دهیم .
قانون خلاص(Law of neutral) : وقتی که قدرت ورودی وجود داشته باشد اما عضوهای عکس العملی عمل ننمایند وضعیت خلاص است. در شکل 3-3 دنده خورشیدی ورودی ومحرک است ، دنده رینگی آزاد وقفسه خروجی می باشد که با چرخ های محرک ثابت شده است و باعث خواهد شد که دنده های پینیون یا هرز گردها دور محورشان بچرخند ودنده رینگی بر دنده خورشیدی خواهد چرخید.
در جعبه دنده های اتوماتیک حالت خلاص یا مانند حالت فوق است ویا توسط محور توربین مبدل که ورودی جعبه دنده است قطع می گردد ودر تمام تولیدات جدید جعبه دندها ی اتوماتیک 2 سرعته (Jetaway (T-300)) ، پاور گلایدوتورک در رایوجعبه دندهایی هستند که وضعیت خلاص از طریق قطع محور توربین مبدل انجام می گیرد.

 

 

 

 

 

قانون کاهش دنده (Law of reduction) : وقتی که یک عضو عکس العملی وجود داشته وقفسه خروجی باشد ، مجموعه در وضعیت کاهش دنده می باشد. بدو طریق می توان قانون کاهش دنده را اجرا نمود.در شکل 4-1 یک نوار ترمز یا باند بمنظور ثابت نگهداشتن دنده رینگی در جعبه دندهای اتوماتیک بکار برده شده است.محل تکیه گاه ثابت باند در پوسته جعبه دنده بمنظورعکس العمل وواکنش دنده رینگی طراحی گردیده است.
در اولین روش کاهش دنده، دنده خورشیدی ورودی می باشد که دندهای پینیون را دور محورشان به گردش در می آورد و چون دندهای پینیون از طرفی با دنده رینگی ثابت شده است بر اثر نیروی عکس العمل آن سبب می شود که محور دنده رینگی حرکت نمایدودر نتیجه قفسه را در جهت گردش دنده خورشیدی با دور کمتر بدوران درآورد.در اینحالت اگر گشتاور ورودی 100 فوت پوند ونسبت کاهش دنده1: 5/1 باشد، گشتاور خروجی به 150 فوت –پوند افزایش می یابد.

 


نوع دیگر کاهش دنده با ثابت نگهداشتن دنده خورشیدی می باشد بدین ترتیب که قدرت ورودی به دنده رینگی داده می شود مطابق شکل5-1 ودر اینحالت نیز پینیونهای سیاره ای دور محورشان می چرخند وچون دنده خورشیدی ثابت است قفسه اطراف آن بحرکت در میآید و قفسه خروجی می باشد و نتیجه آن یکنوع کاهش دنده دیگری هم جهت با محور ورودی خواهد بود .این نوع کاهش سرعت بمنظور استفاده در دنده دو در جعبه دندهای تورک فلایت کرایسلر ،فورد C4وC6 وتوربین 350 و400 جنرال موتور می باشد.بجای باند که یک عضو عکس العملی وبا دوام برای اتصال به پوسته جعبه دنده می باشد ، هم چنین می توان از کلاچ اسپراگی(بادامکی)، کلاچ غلطکی وکلاچ دیسکی چند صفحه ای برای کاهش دنده واتصال آن به پوسته جعبه دنده استفاده نمود. کلاچهای اسپراگی وغلطکی هردو مانند کلاچ یکطرفه عمل می کنند ووسایل بسیار جالبی هستند زیرا در مواقع لزوم عمل درگیری وآزادگردی یا خلاصی رابطور خودکار انجام می دهند وکارشان فقط توسط عمل مکانیکی می باشد واحتیاج به کنترل کنندهای هیدرولیکی ندارند. واین خود موجب می شود که طراحی جعبه دنده وهم چنین سرویس ونگهداری آن آسان گردد واحتیاج به تنظیمات ندارند.
با مطالعه اشکال 6-1و7-1 دو وضعیت درگیری وحالت آزاد را در این کلاچها نشان می دهد.حلقه داخلی عضو ثابت و حلقه خارجی حرکت دورانی می کند ویا عضو محرک می باشد ویا می تواند حلقه داخلی عضو محرک وحلقه خارجی ثابت گردد که در اینصورت توسط یک کلاچ ویا با پیچ پوسته جعبه دنده ثابت می شود مانند اشکال (8-1و9-1)
طرز کار کلاچهای اسپراگی وغلطکی طوری است که در حین انتقال قدرت از موتور به چرخها درگیر شده وعمل کاهش دنده انجام پذیر می گردد وزمانیکه بر عکس عمل نماید یعنی چرخها محرک باشد وموتور را بخواهدبحرکت درآورد کلاج آزاد می شود وانتقال قدرت از چرخها به موتور قطع می گرددودر نتیجه حالت ترمز موتوری وجود نخواهد داشت .

 

بنابراین با رعایت عمل فوق یعنی با چرخیدن شافت خروجی وقفسه که در حال عکس ،عضو ورودی در مجموعه خورشیدی می باشد ، سبب خواهد شد تا دنده رینگی در شکل 8-1 و دنده خورشیدی در شکل 9-1 هم جهت با مسیر ورودی گردش وکلاچ یکطرفه آزاد گردد. در آینده به درگیری مسیر قدرت دنده های اتوماتیک اشاره خواهیم کرد و لازم است بداینم که هر وقت حلقه ورودی در جهت عقربه های ساعت یا هم جهت با گردش موتور بچرخد کلاج اسپرگی یا غلطکی در حال خلاص خواهد بود و وقتی که حلقه ورودی در جهت خلاف عقربه های ساعت بچرخد عمل قفل کردن در آنها انجام خواد شد .
عمل خلاص کلاچ اسپراگی یا غلطکی در حرکت در حرکت معمولی در جاده مستقیم خطری ندارد ولی ئقتی که اتومبیل در سرازیری تند یا تپه ها و کوهها حرکت می کند ،عمل کلاچ یک طرفه در وضعیت کاهش دنده قطعاً اطمینان نخواهد داشت و بایستی سرعت اتومبیل را در وضعیت دنده سنگین (L) قرار دهد که در این صورت خلاصی حذف می شود و چرخها مستقیماً به موتور جهت عمل ترمز موتوری متصل می گردند . با توجه به شکل 10-1 که کامل شده 8-1 می باشد و در آن نوار ترمز یا باند به منظو.ر ثابت نمودن دنده رینگی اضافه شده است هنگام عبور از سربالایی و یا زمانیکه از دنده سنگین استفاده می شود باند درگیر می شود و چون کلاچ غلطکی درگیر می باشد لذا در اینحالت باند کار مثبی انجام نمی دهد ولی در حین عبور از سرازیری و یا هنگام سر خوردن (هنگامی که راننده پدال گاز را رها می کند ) که کلاچ آزاد می گردد عمل باند باعث ثابت نمودن دنده رینگی می شود و در نتیجه قفسه با مبدل و موتور ارتباط پیدا می نماید و اجازه نخواهد داد که اتومبیل به حالت خلاص حرکت کند و حالت ترمز موتوری را دارا خواهد بود .
«سوپاپ کنترل دستی» (Manual valve)
جعبه دندههای اتوماتیک تماماً خودکار نبوده و تابع کنترل دستی توسط راننده می باشند تا وضعیت های راه اندازی (پارک – دنده عقب – خلاص – حرکت به جلو و غیره) جعبه دنده را انتخاب نماید و وضاح است که اصطلاح سوپاپ دستی از عمل آن گرفته شده و توسط راننده تحریک می شود.
سوپاپ دستی مسیر اصلی فشار تنظیم شده را به سوپاپ های تعویض برای درگیری های کلاچ یا باند به منظور انجام تعویض های خودکار یکسره می نماید و هم چنین مستقیماً برای تعیین خط سیر فشار به عناصر اصطکاکی مخصوص برای درگیی دنده های غیر خودکار مانند دنده یک دستی و دنده عقب به کار می رود و بالاخره سوپاپ دستی وضعیت های راه اندازی را تعیین می نماید.
مجموعه های سرو (Servo Assemblies)
سرو شامل یک سلیندر و پیستون می باشد که فشار هیدرولیکی را به نیروی مکانیکی تبدیل می کند و در اغلب دنده ها سرو یا به صورت یک واحد مجزا به بدنه پیچ شده است و یا این که سرو قسمتی از پوسته جعبه دنده می باشد با به کار بردن اهرم ها و اتصالات مناسب سرو به باند به منظور درگیری آن متصل می گردد. بعضی از واحدهای سر و به بازوی اهرمی احتیاج ندارد و مستقیماً عمل می کنند.
باند قرمز واحد سرو بایستی دقیق عمل کند و یک عضو دنده های خورشیدی را به پوسته جعبه دنده برای حرکت به جلو یا عقب ثابت نماید. هنگامی که فشار هیدرولیک به سرو اعمال می گردد باند ازاد می شود. درگیری باند یا به طور خودکار و یا به طور دستی انجام می گیرد.
مجموعه کلاج:
کلاچ ها در تعویض های خودکار و دستی به کار برده می شوند و معروف ترین نوع کلاجی که در جعبه دنده های اتوماتیک به کار می رود، کلاج دیسکی چند صفحه ای می باشد که به دلایل زیر از آن استفاده می گردد:
1- دیسک های چند صفحه ای کلاج دارای ظرفیت گشتاوری زیادی بوده و حجم کمی را اشغال می نمایند.
2- برخلا باندها، کلاج های دیسکی می توانند در حین گردش به آسانی درگیر شوند.
3- احتیاج به تنظیمات اولیه و ثانویه ندارد
توجه داشته باشید که پیستون، صفحات کلاج را بر علیه رینگ قفلی و صفحه ی فشار دهنده به یکدیگر می فشارد. رینگ قفلی پشت صفحه ی فشار دهنده و داخل یک شیار در دام پیستون قرار می گیرد.
سیستم سوپاپ دریچه گاز (Throttle valve System)
سیستم سوپاپ دریچه گاز یک اثر گشتاوری حساس را برای وظایف زیر تولید می کند:
1- تهیه یک فشار تکمیلی که به سوپاپ تعدیل فشار اعمال می گردد تا فشار مسیر را برای افزایش فشار نگهدارنده باندها و کلاج ها تقویت نماید.
2- در ارتباط با سوپاپ گاورنر مراحل تعویض خودکار را برای حدود تغییرات نامحدود ایجاد می نماید.
3- امکان دارد که در هر جا از سیستم هیدرولیک استفاده شود تا کیفیت تعویض را کنترل نماید.
به عنوان مثال برای کنترل نمودن عمل آکومولاتور (مخزن روغن) در یک درگیری کلاج به کار برده شده است.
سوپاپ سستم دریچه گاز یک نوع دیگر سوپاپ تعدیل می باشد زیرا در اینجا نیز یک نیروی هیدرولیکی در مقابل نیروی فنر متغیر متعادل می گردد . از دو روش خلایی و مکانیکی در طراحی جعبه دنده ها برای بدست آوردن اثرات دریچه گاز استفاده می گردد. نخست سیستم خلایی را مورد بررسی قرار می دهیم که دارای یک واحد یا فراگمی می باشد وظیفه ی واحد خلایی این است که خلاء ورودی مایننولد را دریافت می کند و از طریق نیروی فنر آن به سوپاپ دریچه گاز منعکس می نماید. به واحد خلایی 3 نیرو اثر می کند فشار مطلق و نیروی فنر در سمت خلاء دیافراگم در جهت عمل سوپاپ و فشار جو در طرف دیگر دیافراگم اثر می کند اثر نیروی فنر مقدار فشار سوپاپ دریچه گاز را تعیین می کند و اثر فشار جو روی دیافراگم، اثر نیروی فنر به سوپاپ را کاهش می دهد و در نتیجه در وضعیت خلاء زیاد موتور مانند حالت دور آرام فشار اعمال شده به سوپاپ کم بوده و یا اصلاً فشار وجود ندارد. هنگامی که دریچه گاز باز می شود خلاء موتور افت می کند و باعث افزایش نیروی فنر می گردد و فشار سوپاپ زیاد می گردد.
سیستم سوپاپ تعدیل خلایی (Vacuum Modulator vlave System)
سیستم سوپاپ تعدیل خلایی (مدولاتور) در سیستم های کنترل هیدرولیک تمام جعبه دنده های رایج جنرال موتور به کار برده شده است و به طور کلی بعضی از همان وظایف سیستم سوپاپ دریچه گاز خلایی را انجام می دهد. سوپاپ تعدیل با کنترل خلایی اثر فشار تعدیل شده را تنظیم می کند و فشار اصلی جعبه دنده متناسب با گشتاور ورودی به آن را (گشتاور موتور و مبدل) تغییر می دهد که حساس به خلاء موتور و فشار گاز ورنر می باشد.
سوپاپ مدولاتور بایستی خودش در مقابل نیروی فنر واحد خلایی موازنه گردد و توسط فشار گاورنر به حرکت متقابل فنر کمک نماید و در نتیجه اعمال فشار گاورنر به سوپاپ باعث می شود تا فشار مدولاتور را کاهش دهد.
واحد خلایی مدولاتور در دو نوع بدون جبران کننده و با جبران کننده ارتفاع طراحی شده که شبیه یکدیگر می باشند و مانند واحدهای خلایی سیستم دریچه گاز کار می کنند که قبلاً طرز کار آنها تشریح شده است و خلاء زیاد، یک فشار مدولاتور کم و خلاء کم، یک فشار مدولاتور زیاد را تولید می کند.
در بعضی جعبه دنده های اتوماتیک جنرال موتور، سیستم مدولاتور فقط برای تقویت مسیر اصلی فشار به کار برده شده است در این حالت یک سیستم سوپاپ دریچه گاز با کنترل مکانیکی اضافه گردیده تا عمل تعویض را در مواقع ضروری انجام دهد که در جعبه دنده دو سرعته پاورگلاید شورلت و جعبه دنده دو سرعته پونتیاک (M-35) به کاربرده شده است.
جعبه دنده های T-400 و T-350 و T-300 سیستم دریچه گاز اضافی ندارند بلکه از فشار مدولاتور برای عمل تعویض استفاده گردیده است.
سیستم سوپاپ گاورنر(Gorernor valve system)
گاورنر یک سرعت سنج هیدرولیکی است توسط شافت خروجی جعبه دنده می چرخد و مانند سوپاپ تعدیل عمل می نماید و در یک اثر فشار هیدرولیکی را متناسب با سرعت اتومبیل به جعبه دنده منتقل می نماید و دراصل برای فرمان تعویض دنده های جعبه دنده هم زمان با سیستم دریچه گاز یا مدولاتور به کاربرده می شود و هم چنین در بعضی جعبه دنده ها یک اثر کمکی یا تقویت کننده ی سوپاپ های کنترل می باشد در اتومبیل های رایج امروزی چند نوع مجموعه گاورنر طراحی شده که همه ی آنها با استفاده از نیروی گریز از مرکز حاصل از حرکت دورانی عمل می کنند.
سیستم های تعویض دستی و خودکار (Automatic and manual shift system)
وظیفه ی سیستم تعویض این است که نسبت نده ها را به موقع تغییر دهد یعنی سرعت اتومبیل را با عمل راننده تطبیق نماید. اگر این تعویض ها خودکار انجام گردد، مسلتزم آن است که یک سوپاپ تعویض وجود داشته باشد. جعبه دنده های متداول نیم اتوماتیک که در اتومبیل های سواری کوچک به کار می روند سیستم های تعویض خودکار ندارند و نسبت دنده های مورد نیاز بایستی فقط توسط راننده انتخاب گردد . در صورتی که در تعویض های خودکار احتیاج به تعویض دنده ها توسط راننده نمی باشد.
سیستم های هیدرولیکی جعبه دنده ها عبارت بودند از: سیستم فشار، سیستم دریچه گاز یا مدولاتور، سیستم گاورنر علاوه بر آن سوپاپ دستی ، سروها و باندها و کلاچ ها که قبلاً تشریح گردید حالا به تشریح تعویض های خودکار و دستی می پردازیم که در آنها وظایف هر کدام از سیستم ها مرور خواهد گردید.
طرز کار سیستم تعویض خودکار و دستی را در یک نوع جعبه دنده دو سرعته متداول بررسی می کنیم و در مورد عناصر اصطکاکی آن بایستی کنترل گردد بحث می نماییم. در وضعیت P و N عناصر اصطکاکی درگیر نمی باشند. باند دنده یک برای درگیری حرکت نده یک خودکار و دنده یک دستی، کلاج حرکت به جلو یا حرکت مستقیم برای وضعیت خودکار دنده مستقیم و کلاج عقب برای دنده عقب به کار می رود.
بحث در مورد سیستم را با یک بررسی سریع در مورد سیستم تهیه فشار را آغاز می کنیم زیرا اساس حیات جعبه دنده می باشد و مستقیماً به سیستم تعویض ارتباط دارد.
سوپاپ تخلیه هوای پمپ روغن که به طور ساده هوای محبوس شده داخل سیستم را تخلیه می نماید فنر آن سوپاپ را در حالت باز نگه می دارد و اجازه می دهد که هوا تخلیه گردد تا اینکه فشار سیستم در مدار پمپ افزایش یابد. وقتی که فشار پمپ افزایش یافت سوپاپ در محل سیست خود می نشیند و سوراخ را می بندد.
وظیفه مدولاتور فقط تعدیل یا تغییر فشار مسیر اصلی می باشد. یک سیستم دریچه گاز مکانیکی به طور جداگانه در این مدار هیدرولیکی برای تعیین برنامه ی تعویض به کار می رود.
وضعیت های خلاص و پارک (Neutral and park):
دیاگرام مسیر وضعیت پارک (P) و خلاص (N) را که شامل قسمتی از سیستم کنترل هیدرولیکی می باشد که در آن سیستم تهیه فشار، احتیاجات اصلی فشار، تغذیه مبدلف مدارات خنک کن و روغن کاری را برآورده می نماید. سوپاپ دستی مسیر فشار روغن را به مسیرهای درگیری باند و کلاج قطع نموده است.
وضعیت حرکت D در دنده یک خودکار (Automatic Drive Range – Low Gear) :
وقتی که سوپاپ دستی در وضعیت D باشد، مسیر اصلی فشار به سروی دنده یک منتقل می گردد و باند دنده یک درگیر می شود و دنده خورشیدی دنده یک ثابت می گردد درگیری باند دنده یک خودکار نمی باشد و توسط سوپاپ دستی انجام می گردد.
وضعیت خودکار حرکت D در حالت دنده مستقیم (Automatic Drive Range Hig Gear)
وقتی که اتومبیل در دنده یک می باشد کنترل کننده های تعویض خودکار جعبه دنده برای تعویض از دنده به یک دنده مستقیم آماده می گردند. جعبه دنده هایی که دارای تعویض خودکار می باشند یک یا چند سوپاپ تعویض (که در این حالت فقط یک سوپاپ تعویض داد)ف یک مدار گاورنر و یک مدار سوپاپ سیستم دریچه گاز را دار می باشند (بعضی وقت ها یک یستم مدولاتور به کار برده می شود که مانند سیستم دریچه گاز تغییرات فشار را به سوپاپ تعویض منتقل می نماید).
سوپاپ تعویض می تواند جریان را کنترل نماید و به آن جهت بدهد و باعث تعویض دنده گردد . جابجایی و حرکت آن توسط مدارات گاورنر و سیستم دریچه گاز انجام می گردد. افزایش سرعت اتومبیل باعث می گردد که سوپاپ تعویض باز شود و یا تعویض مستقیم انجام گیرد. در صورتی که فشار سیستم دریچه گاز که اثر احساس گشتاور موتور می باشد، مایل است تا از حرکت سوپاپ به سمت تعویض مستقیم جلوگیری نماید و سعی می کند که آن را بسته نگه دارد.
سیستم دریچه گاز به طور مکانیکی توسط راننده از طریق اتصالات مربوطه به دریچه گاز و سیستم گاورنر توسط سرعت اتومبیل از شفات خروجی جعبه دنده فعال می گردند فشارهای گاورنر و سیستم دریچه گاز مستقیماً به دو انتهای سوپاپ تعویض دنده یک به دنده مستقیم اثر می نمایند.
فشار سیستم دریچه گاز در بیشتر حالات و در این مثال، قبل از این که به سوپاپ تعویض اثر نماید توسط سوپاپ تعدیل اصلاح می گردد. علاوه بر آن یک نیروی فنر ثابت در سیستم دریچه گاز به کار برده شده تا نقطه ی بسته شدن آن را در تعویض معکوس تعیین نماید. مشاهده می گردد که فشار مسیر اصلی از سوپاپ دستی در انتظار سوپاپ تعویض می باشد و زمینه حرکت را برای تعویض کامل آماده نموده است. سیستم تعویضی که به طور نمونه توضیح داده شد دقیقاً مانند سیستم تمام جعبه دنده های اتوماتیک می باشد.
اگر شما با اتومبیلی که مجهز به دنده اتوماتیک می باشد رانندگی نمایید متوجه خواهید شد که نقاط تعویض در سرعت های مختلف انجام می گردد که به چگونگی جابجایی (کم یا زیاد نمودن) پدال گاز توسط پای شما بستگی دارد. شاید تعجب نمایید ولی جواب آن ساده است.
کم باز شدن دریچه گاز یک اثر ضعیفی را به سوپاپ تعویض اعمال می نماید و فقط به سرعت کم اتومبیل احتیاج می باشد تا اثر گاورنر به مقدار کافی تولید گردد و فشار سیستم دریچه گاز و نیروی فنر را بی اثر نماید.
وقتی که راننده پدال گاز را می فشارد. باز شدن دریچه گاز یک اثر بیشتری را به سیستم اعمال می نماید که متقابلاً به افزایش سرعت اتومبیل موکول می گردد و گاورنر اثر لازم را برای تعویض تولید می نماید. برای انجام عمل تعویض محدودیت هایی از نظر سرعت وجود دارد به عنوان مثال در یک سیستم 2 سرعته، دامنه تعویض یک به دو معمولاً بین سرعت های 18 تا 65 مایل بر ساعت برای موتورهای 8 سیلندر V شکل می باشد در صورتی که دامنه تعویض برای موتورهای 6 سیلندر بین سرعت های 38 تا 45 مایل بر ساعت است.
سیستم تعویض خودکار مانند یک کامپیوتر هیدرولیکی می باشد و برای تعویض خودکار، متناسب با باز شدن دریچه گاز و سرعت اتومبیل برنامه ریزی می کند. یعنی اطلاعات فرستاده شده را از سیستم های دریچه گاز و گاورنر دریافت نموده و سپس ارزیابی می کند و سرانجام اثر گاورنر به انتهای سوپاپ تعویض باعث تغییر نسبت دنده می گردد.
نمونه هایی از تعویض مستقیم و تعویض معکوس به طور خودکار (Automatic Usphift and Dowm shift patterns)
تعویض های مستقیم خوکار همگی متناسب با باز بودن دریچه گاز با نقطه ی تعویض متغیر انجام می گیرد. اگر موقعی که پدال گازف دریچه گاز را تا آخر باز نموده باشد و تعویض انجام گیرد در این حالت تعویض تمام گاز می باشد (سوپاپ باز دارنده بسته می باشد) . اگر راننده مایل باشد که عمل تعویض در بالاترین سرعت اتومبیل انجام گیرد، بایستی پدال گاز را علاوه بر این که دریچه گاز کاملاً باز است بفشارد تا سوپاپ باز دارنده حرکت کند و مدار را باز نماید. که در این حالت تعویض تمام گاز زیاد می باشد (سوپاپ بازدارنده باز است).
با حرکت دادن پدال گاز تا آخر که ارتباط آن با جعبه دنده به طور مکانیکی به انتهای سوپاپ بازدارنده در مجموعه ی سوپاپ سیستم دریچه گاز می باشد، اجازه خواهد داد که مسیر اصلی روغن بدون تاثیر سیستم دریچه گاز از مجرای سوپاپ بازدارنده به سوپاپ تعویض منتقل گردد.
سوپاپ بازدارنده را در حالتی که مسیر روغن، سوپاپ دریچه گاز را مسدود نموده است. وقتی که سوپاپ بازدارنده به سمت راست حرکت کند، در این حالت فشار روغن سوپاپ دریچه گاز که مساوی فشار مسیر اصلی می باشد، می تواند با خط سیر خودش از طریق مدار باز دارنده به سوپاپ تعویض منتقل گردد با اعمال فشار سوپاپ سیستم دریچه گاز و سوپاپ بازدارنده که مساوی فشار مسیر می باشند، واضح می رگدد که چرا این مجموعه تعویض ماکزیمم را دارا می باشد. در بعضی مجموعه های سوپاپ دریچه گاز مکانیکی، سوپاپ بازدارنده را سوپاپ دنده معکوس می نامند که همان وظیفه را انجام می دهد مانند جعبه دنده تورک فلایت خانواده جعبه دنده فورد کروئیز – ماتیک که با سیستم دریچه گاز با کنترل خلایی می باشد دارای یک مجموعه ی سوپاپ تعویض معکوس مجزا می باشد که به طور مکانیکی به دریچه گاز متصل می گردد و همان وظیفه سوپاپ باز دارنده را می باشد. سوپاپ تعویض معکوس را می توان دقیقاً سوپاپ بازدارنده نامید. در جعبه دنده های هیدراماتیک 400 و 350 و توربین 300 جنرال موتور سیستم بازدارنده از مجموعه سوپاپ تعدیل خلایی جدا می باشد. سیستم بازدارنده 350 به طور مکانیکی می باشد در صورتی که سیستم های بازدارنده 400 و 300 به وسیله یک دکمه برقی توسط پدال گاز عمل می کند و یک سولفویید برقی که در مجموعه بدنه ی سوپاپ نصب می گردد را تحریک می نماید و باعث می گردد که عمل تعویض بازدارنده انجام گیرد. در جعبه دنده شیفت کوماند امریکن موتور و در انوع جدید جعبه دنده فلاش – اُ – ماتیک نیز از همین روش استفاده می گردد در تمام سیستم های به کار رفته راننده توسط پدال گاز آن را کنترل می نماید.
تعویض های معکوس خود به 3 دسته تقسیم می گردد. سریدن یا تعویض معکوس با بسته بودن دریچه گازف تعویض معکوس اجباری (بدون اثر سوپاپ بازدارنده) و تعویض معکوس اجباری (از طریق سوپاپ باردارنده). کنترل این تعویض های معکوس توسط ایجاد فشارهای متغییر انجام می شود که به مسیرهای ویژه سوپاپ تعویض کننده اثر می کنند . این فشارها شامل فشار گاورنر ، فشار سیستم دریچه گاز یا مدولاتور و فشار بازدارنده می باشد.
در سیستم جعبه دنده های دو سرعته در تعویض معکوس به دنده یک خودکار، سوپاپ تعویض ، تغذیه مسیر اصلی فشار را به مسیر کلاج قطع می کند. حالت هائی که سبب تعویض های معکوس مختلف می گردد عبارتند از: کاهش سرعت اتومبیل، افزایش فشار به پدال گاز و یا هر دو تای آنها.
تعویض معکوس با بسته بودن دریچه گاز یا سریدن (Coat or closed Throttle Down shift)
وقتی که از سرعت اتومبیل کاسته می گردد فشار گاورنر کاهش می یابد و سوپاپ تعویض در حالت حرکت دنده یک قرار می گیرد. در سرعت تقریباً 15 مایل بر ساعت فشار گاورنر کمتر از نیروی فنر سوپاپ تعویض مربوط به سیستم دریچه گاز می گردد و نیروی فنر، سوپاپ را در حالتی نگه می دارد که روغن مدار دنده مستقیم تخلیه گردد که در این حالت نیروی فنر است که در حالت سریدن نقطه ی تعویض معکوس را با بسته بودن دریچه گاز تعیین می نماید. فشار سوپاپ سیستم دریچه گاز در حالت بسته بودن دریچه گاز صفر می باشد. و هیچ اثری به انتهای سوپاپ تعدیل فشار ندارد.
تعویض معکوس اجباری بدون اثر سوپاپ بازدارنده (Forced Down shift – to Detent)
با کاهش یافتن سرعت اتومبیل افزایش فشار به پدال گاز باعث می شود که اثر سوپاپ سیستم دریچه گاز افزایش یافته و به انتهای سوپاپ تعدیل کننده سیستم دریچه گاز اعمال گردد این فشار بر فشار گاورنر غلبه می کند و سوپاپ تعویض را در وضعیت دنده یک قرار می دهد. سوپاپ تعویض در وضعیت دنده یک باقی می ماند تا سرعت اتومبیل و در نتیجه فشار گاورنر فشار سوپاپ سیستم دریچه گاز را بی اثر نماید.
تعویض معکوس اجباری از طریق سوپاپ بازدارنده (Forced Down shift – through Detent)
سیستم بازدارنده وقتی فعال می گردد و جعبه دنده به طور خودکار به دنده یک تعویض می گردد . هم چنین سرعت اتومبیل نیز بایستی کمتر از سرعت ماکزیمم باشد تا تعویض معکوس از طریق سوپاپ بازدارنده انجام گیرد. جعبه دنده در دنده یک باقی ماند تا این که راننده فشار وارد بر پدال گاز را کاهش دهد و یا این که سرعت اتومبیل به نقطه ی تعویض ماکزیمم برسد. در اصل عمل سوپاپ بازدارنده موقتاً بر سوپاپ تعویض غلبه می نماید. سرانجام سرعت اتومبیل و در نتیجه فشار گاورنر به حدی می رسد که بدون توجه ب حالت پدال گاز خواهد توانست جعبه دنده را به دنده مستقیم تعویض نماید.
وضعیت دنده عقب (Reversc Range) R:
وقتی که سوپاپ در وضعیت R باشد فشار اصلی فقط به مدار دنده عقب منتقل می گردد. روغن مسیر اصلی از طریق سوپاپ دستی به مدار روغن دنده عقب منتقل می گردد و کلاج عقب درگیر می شود . هم چنین فشار مسیر اصلی به مجموعه ی سوپاپ کمکی سوپاپ تعدیل فشار اثر می نماید و مسیر روغن مدولاتور نیز عمل عادی خود را به سوپاپ کمکی انجام می دهد بنابراین یک فشار ترکیبی دوبل به سوپاپ تعدیل اثر می کند و فشار اصلی در مقایسه با وضعیت D افزایش می یابد و به مقدار ماکزیمم خود می رسد . مدارات سروی دنده یک و کلاج دنده مستقیم از مسیر اصلی قطع و به محل تخلیه سوپاپ دستی باز می باشند.
تعویض های نیمه خودکار (Semi Automatic shifting):
در این نوع وسایل ساده جعبه دنده فاقد کنترل کننده های تعویض خودکار می باشد و سوپاپ دستی برای انتخاب هر دنده خاصی به کار می رود . احتیاج به پدال کلاج نمی باشد زیرا مبدل گشتاور قسمتی از مسیر جریان قدرت می باشد و در اصل طرز کار جعبه دنده به طور کامل توسط راننده کنترل می گردد و هر وضعیت حرکت توسط اهرم انتخاب دنده با تمایل راننده انجام می گیرد.
به عنوان نمونه کارخانجات جنرال موتور فورد جعبه دنده های نیم اتوماتیک 2 سرعته را به منظور به کار بردن در اتومبیل های سواری کوچک ارائه نموده اند که به ترتیب در جعبه دنده نیم اتوماتیک نورک – درایو شورلت با وضعیت های (P-R-N-Hi- L) و فورد نیم اتوماتیک با وضعیت (P-R-N-Hi-2-1) به کار رفته است.
چرخ‌دنده
چرخ‌دنده وسیله‌ای است برای انتقال گشتاور که به کمک آن می‌توان مقدار گشتاور و یا سرعت دورانی را کاهش یا افزایش داد. همچنین به کمک چرخ دنده ها می‌توان جهت حرکت را تغییر داد.
ساختار
داخلی‌ترین قسمت چرخ‌دنده توپی Hub می‌باشد که به محور محرک متصل می‌باشد. در بیرون این قسمت جان چرخ‌دنده Web قرار گرفته است. بیرونی‌ترین قسمت در جهت شعاعی، محیط چرخ‌دنده Rim می‌باشد که دندانه‌های چرخ‌دنده در این قسمت قرار می‌گیرند. این بخش از چرخ‌دنده منبع اصلی ایجاد صدا می‌باشد.
مهمترین اصطلاحاتی که در طراحی چرخ‌دنده بکار می‌روند عبارتند از:
دایره گام Pitch Circle: دایره‌ای فرضی که تمامی‌محاسبات بر اساس آن انجام می‌گیرد. دایره گام دو چرخ‌دنده درگیر بر هم مماس می‌باشند.
گام محیطی Circular Pitch: طول کمانی از دایره گام که بین دو نقطه متناظر از دو دندانه مجاور قرار گرفته است.
ارتفاع سر دنده Addendum: فاصله بین بالای دندانه Top Land تا دایره گام.
ارتفاع ته دنده Dedendum: فاصله بین ته دندانه Bottom Land تا دایره گام.
لقی محیطی Backlash: مقداری که فضای خالی بین دو دندانه یک چرخ‌دنده از ضخامت دندانه‌های چرخ‌دنده درگیر با آن در امتداد دایره گام بیشتر است.
چرخ‌دنده‌ها بر اساس وضعیت قرارگیری محورهای دو چرخ‌دنده درگیر نسبت به هم به دو گروه اصلی تقسیم می‌شوند:
چرخ‌دنده‌های با محورهای موازی
چرخ‌دنده‌های با محورهای غیرموازی

 

چرخ دنده‌ها
در دل هر ابزار مکانیکی تعداد زیادی چرخ دنده وجود دارد. تا به حال فکر کرده اید که چرا اینقدر چرخ دنده در آنها استفاده می‌شود. مهمترین دلیل آن اینست که همه این ابزارها یک موتور کوچک دارند که با سرعت بالا می‌چرخد. این موتور می‌تواند توان مورد نیاز را تأمین کند، اما گشتاور آن به اندازه کافی زیاد نیست. مثلاً در یک پیچ گوشتی برقی باید گشتاور بالا برود تا پیچ گوشتی بتواند پیچ‌ها را سفت کند، ولی موتور گشتاور کمی تولید می‌کند و در عوض سرعت بالایی دارد. کافیست از چند چرخ دنده استفاده کنیم تا مشکلمان حل شود.
کار دیگری که از چرخ دنده برمی آید تغییر جهت چرخش است. اگر دو چرخ دنده را که کنار هم قرار دارند با دقت نگاه کنید می‌بینید که همواره یکی از آنها ساعتگرد می‌چرخد و دیگری پادساعتگرد. در این مطلب می‌خواهیم شما را با انواع مختلف چرخ دنده هایی که در ابزارهای مکانیکی می‌بینید آشنا کنیم.

 

چرخ دنده ها
معمولاً چرخ دنده‌ها برای یکی از کاربردهای زیر استفاده می‌شوند:
1- تغییر جهت چرخش
2- افزایش یا کاهش سرعت چرخش
3- انتقال حرکت دورانی به یک محور دیگر
4- همزمان سازی حرکت دو محور
موارد 1 و 2 و 3 را می‌توانید در مدل سازی بالا مشاهده کنید. چرخها در جهت عکس همدیگر می‌چرخند، چرخ کوچکتر با سرعت بیشتر از چرخ بزرگ می‌گردد و حرکت دورانی از محور چرخ بزرگ به محور چرخ کوچک منتقل شده است.
قطر چرخ سمت چپ دو برابر چرخ دیگر است. اصطلاحاً می‌گوییم نسبت این دو چرخ دنده 2:1 (بخوانید "دو به یک") است. اگر دقت کنید می‌بینید که هر بار که چرخ بزرگ یک دور می‌زند، چرخ کوچک دو دور به دور خود می‌چرخد. پس سرعت چرخش دو برابر شده است.

 

مفهوم نسبت چرخ دنده
اگر بدانید که محیط یک دایره چگونه محاسبه می‌شود، به راحتی می‌توانید مفهوم نسبت چرخ دنده‌ها را درک کنید. محیط دایره برابر است با حاصلضرب عدد پی در قطر آن. بنابراین نسبت قطر دو چرخ دنده، در واقع همان نسبت محیط های آنها است. در مدل سازی زیر رابطه بین قطر و محیط یک دایره نشان داده شده است.
همانطور که می‌بینید قطر این دایره 27/1 اینچ است، ولی وقتی دایره می‌چرخد، خطی به طول 4 اینچ را طی می‌کند. حالا فرض کنید که این دایره در تماس با دایره دیگری قرار دارد که قطر آن نصف این مقدار، یعنی 635/0 اینچ است. اگر این چرخ را یک دور بچرخانیم خط طی شده 2 اینچ طول خواهد داشت. چون هر دو چرخ در کنار هم هستند، با گردش چرخ بزرگ، چرخ کوچک هم حرکت می‌کند. دو چرخ مسافت یکسانی را طی می‌کنند، پس چرخ کوچک دو دور می‌زند.
بیشتر چرخ دنده های واقعی دندانه دارند، دندانه سه مزیت بزرگ دارد:
- از لغزش چرخ دنده‌ها جلوگیری می‌کند. پس محورهایی که با چرخ دنده به هم متصل شده اند، همواره همگام با یکدیگر حرکت می‌کنند.
- با استفاده از آنها می‌توان به راحتی نسبت دو چرخ دنده را حساب کرد، کافیست تعداد دنده های یک چرخ را بشمارید و به تعداد دنده های چرخ دوم تقسیم کنید.
- با استفاده از دنده‌ها می‌توان خطاهای کوچکی را که در هنگام ساختن چرخ‌ها پیش آمده برطرف کرد. چون نسبت چرخها با تعداد دندانه‌ها کنترل می‌شود، دیگر اشتباهات کوچک در تولید چرخها اهمیت چندانی ندارد.
تا این جا همه چیز ساده بود و هر کس می‌تواند به راحتی مطالب بالا را بفهمد. اما آنهایی با ابزارهای مکانیکی کار کرده اند، می‌دانند که مشکلات دیگری هم وجود دارد که باید راه حلی برای آنها پیشنهاد کرد. به تدریج ایده های جدیدی برای استفاده بهتر از چرخ دنده‌ها ارائه شد تا این مشکلات برطرف شود.
اولین مشکل این بود که امکان ساختن چرخ های خیلی کوچک وجود نداشت. به همین خاطر نمی شد نسبت دو چرخ دنده را خیلی افزایش داد. اگر شما می‌خواستید این مشکل را حل کنید، چه می‌کردید؟
چرا به جای کوچک کردن یک چرخ، چرخ دیگر را بزرگتر نمی کنند؟
به شکل روبرو نگاه کنید. آیا متوجه شدید که مسئله چطور حل شد؟
(شکل 1 ) چرخ بنفش دو تکه است. یک چرخ کوچک به وسط یک چرخ بزرگتر متصل شده است. چرخ کناری فقط به چرخ کوچک متصل است. درست است که چرخهای بزرگ هم اندازه اند، اما سرعت چرخش یکی از آنها دو برابر دیگری است. اگر تعدادی زیادی از این چرخ‌ها را در کنار هم قرار دهید، چیزی شبیه زیر خواهید داشت.
در شکل شماره 2، سرعت چرخ بنفش دو برابر سرعت چرخ آبی است و سرعت چرخ سبز هم دو برابر سرعت چرخ بنفش. سرعت چرخ سبز چند برابر سرعت چرخ آبی خواهد بود؟
اگر چرخ وسطی را کوچکتر کنیم (یا چرخ بیرونی را بزرگتر بسازیم)، می‌شود باز هم نسبت چرخ دنده‌ها را بزرگ کرد. در شکل زیر چرخ وسطی 5/1 چرخ بیرونی است.
(شکل 3) پس اگر چرخ بنفش را به موتوری وصل کنید که با سرعت 100 دور در دقیقه بچرخد، چرخ قرمز 2500 در دقیقه خواهد چرخید. اگر موتور را به چرخ قرمز وصل کنید، می‌توانید سرعت چرخش را 25 بار کاهش دهید. تا به حال درون کنتور برق خانه خود را دیده اید؟ در کنتور معمولاً پنج چرخ دنده وجود دارد که به همین شکل به هم متصل شده اند.
نسبت چرخ دنده های کنتور 10:1 است. می‌توانید بگویید چرا؟
یک نکته جالب دیگر اینکه اگر دقت کنید می‌بینید که در کنتور اعداد روی چرخهای مجاور برعکس هم نوشته شده است. دلیل انجام این کار آنست که چرخها مستقیماً به هم وصل شده اند.
اما اگر بخواهید به نسبت های واقعاً بزرگ دست پیدا کنید، هیچ چیز توانایی رقابت با چرخ دنده های حلزونی را ندارد. چرخ دنده حلزونی از یک محور مارپیچی و یک چرخ دنده تشکیل شده است. با هر گردش محور، چرخ دنده یک دندانه جلو می‌رود. اگر چرخ چهل دندانه داشته باشد، در یک فضای بسیار کوچک به نسبت 40:1 دست پیدا می‌کنیم مدل سازی زیر یک چرخ دنده حلزونی را نشان می‌دهد که در برف پاک کن ماشین استفاده می‌شود.
از این چرخ دنده‌ها در کیلومتر شما ماشین نیز استفاده می‌شود . به عنوان مثال در کیلومتر شمار رو به رو (شکل 4) سه جفت از این چرخ دنده‌ها را می‌بینید:

 

 

 

چرخ دنده های خورشیدی
یکی از جالب ترین چرخ دنده هایی که اختراع شده است، چرخ دنده خورشیدی است. فرض کنید می‌خواهید دو چرخ دنده داشته باشید که سرعت یکی 6 برابر دیگری باشد، اما جهت چرخش آنها با هم یکی باشد. برای این کار دو راه وجود دارد. راه حل اول اینست که از چیزی شبیه شکل 5 استفاده کنیم.
چرخ آبی 6 برابر چرخ زرد است. اندازه چرخ قرمز مهم نیست. وظیفه چرخ قرمز آنست که جهت چرخش را تغییر دهد تا جهت چرخش نهایی با جهت چرخش زرد یکی باشد. ولی اگر بخواهید محور چرخ دنده خروجی با محور چرخ دنده ورودی یکسان باشد مجبورید از چرخ دنده های خورشیدی استفاده کنید.
به شکل 6 توجه کنید. در این سیستم چرخ زرد (خورشید) به طور همزمان، هر سه چرخ قرمز (سیاره ها) را می‌چرخاند.
هر سه این چرخ دنده‌ها به یک صفحه (Planet carrier) متصل اند و با دندانه های درون چرخ دنده آبی جفت شده اند (توجه کنید که در حالت عادی دندانه‌ها روی سطح بیرونی چرخ دنده بودند نه درون آن). این چرخ حلقه (Ring) نام دارد و محور خروجی به آن متصل است. محور خروجی به حلقه آبی متصل است و صفحه ثابت نگه داشته می‌شود. به این ترتیب یک نسبت 6:1 بدست می‌آید.
اگر ورودی را به یکی دیگر از چرخ دنده های این مجموعه متصل کنید، نسبت جدیدی بدست می‌آید. به این ترتیب می‌توانید با استفاده از همین مجموعه و فقط با تعویض ورودی، خروجی و قسمت ثابت سرعت های مختلفی را در خروجی ایجاد کنید. مثلاً اگر ورودی به خورشید وصل باشد، حلقه ثابت نگه داشته شود و محور خروجی به صفحه متصل شود، صفحه و سیاره‌ها به دور خورشید می‌چرخند، در این صورت خورشید برای چرخاندن صفحه باید هفت دور بچرخد نه شش دور. چون صفحه، خورشید را یک بار در جهت چرخش خود چرخانده است، پس یک دور از چرخش خورشید خنثی می‌شود. بدین ترتیب ما یک کاهش 7:1 در چرخش ایجاد کرده ایم. می‌توانید خورشید را ثابت نگه دارید، ورودی را به چرخ دنده حلقوی متصل کنید و خروجی را به صفحه. در این صورت یک کاهش 1/17:1 بدست می‌آید. حالتهای مختلف استفاده از این مجموعه در مدلسازی زیر نشان داده شده است. البته توجه کنید نسبت و تعداد چرخ دنده های مدلسازی با شکل تفاوت دارد.
چرخ دنده خورشیدی قلب یک دنده اتوماتیک است. سایر قسمتهای موجود در دنده اتوماتیک ماشین فقط وظیفه تعویض ورودی و خروجی و یا ثابت نگه داشتن چرخ دنده های مختلف را بر عهده دارند.

 

زنجیر و چرخ
چرخ دنده‌ها کارهای متنوعی انجام می‌دهند. فرض کنید که می‌خواهید حرکت دو چرخ قرمز را با هم همگام کنید، ولی آنها از یکدیگر فاصله دارند. اگر یک چرخ دنده بزرگ بین آنها قرار دهید می‌توانید ارتباط بین آنها را برقرار کنید. در این حالت جهت چرخش دو چرخ یکسان است.شکل 7
اما اگر بخواهید جهت چرخش آنها عکس یکدیگر باشد می‌توانید از دو چرخ دنده کوچکتر استفاده کنید. شکل 8
ولی در هر حال به تعدادی چرخ دنده اضافی نیاز دارید. این چرخ دنده‌ها به محورهای جدیدی نیاز دارند. پس استفاده از این روش، وزن دستگاه شما را هم زیاد می‌کند. در چنین مواردی معمولاً از یک زنجیر یا تسمه استفاده می‌کنند.شکل 9
زنجیر سبک تر از چرخ دنده است و در ضمن می‌توان یک زنجیر را به تعداد زیادی چرخ دنده بست تا همه آنها را با هم بچرخاند. مثلاً در موتور ماشین یک تسمه هم دینام را می‌چرخاند و هم دو میل بادامک را. اگر می‌خواستید به جای تسمه از چرخ دنده استفاده کنید، این کار خیلی مشکل تر بود. علاوه بر این هر وقت که بخواهید ارتباط دو چرخ را قطع کنید می‌توانید زنجیر را جدا کنید. این ویژگی به ما کمک می‌کند که خیلی ساده تر ابزارهای مان را تعمیر کنیم. اگر دوست دارید درباره انواع چرخ دنده‌ها بدانید، اینجا را بخوانید.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  73  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله دنده های خورشیدی یا سیاره ای در جعبه دنده ها

دانلود مقاله سیاره ها و ستاره ها

اختصاصی از حامی فایل دانلود مقاله سیاره ها و ستاره ها دانلود با لینک مستقیم و پر سرعت .

 

 


سیاره به جسمی فضایی با جرم بسیار زیاد گفته می‌شود که گرد یک ستاره در گردش باشد و خود نیز ستاره نباشد.
بنا بر تعریف ۲۴ اوت ۲۰۰۶ (میلادی) اتحادیه بین‌المللی اخترشناسی سیاره در منظومه خورشیدی جرمیست که:
۱- در مداری به دور خورشید در حرکت باشد.
۲- آن قدر جرم داشته باشد که گرانش خودش بر نیروهای پیوستگی جسم صلب آن غلبه کند .یعنی در تعادل هیدرواستاتیک باشد و شکلش نیز تقریباً مدور باشد.
۳- توانسته باشد که مدار خود را از اجرام اضافه بزداید.
جرمی که تنها سازگار با دو شرط اول باشد و یک قمر هم نباشد سیاره کوتوله تعریف شده‌است.
واژه
واژه سیاره در فارسی از عربی (به معنی «راه‌پیما») گرفته شده که ترجمه دقیقی است برای واژه πλανήτης (پلانِتِس) یونانی. در عربی به سیاره «کوکب» می‌گویند.
سیاره‌ها
سیاره از ستاره کوچک‌تر است و از خود نوری نمی‌تاباند. بخاطر بزرگی سیاره‌ها، نیروی گرانش (جاذبه) شکل آنها را بصورت کروی درآورده است. به اجرامی که گرد خود سیاره‌ها می‌گردند سیاره نمیگویند بلکه آن دسته از اجرام، ماهک یا قمر نام دارند.
پیش از دهه ۱۹۹۰ میلادی تنها ۹ سیاره (و همگی در سامانه خورشیدی ما) شناخته شده بودند، ولی امروزه (در سال ۲۰۰۴) تعداد ۱۳۰ سیاره شناسایی شده است. همه سیاره‌های تازه‌یاب در بیرون از منظومه خورشیدی ما قرار دارند، از اینرو گاه به آنها برون‌سیاره نیز گفته می‌شود. سیاره‌ها مقدار کمی انرژی از طریق همجوشی تولید می‌کنند، برخی هم هیچ انرژی‌ای تولید نمیکنند. کره زمین نیز یک سیاره است.
سیاره‌های سامانه خورشیدی
هشت سیاره اصلی و برسمیت‌شناخته‌شده منظومه ما به ترتیب فاصله از خورشید بدین شرحند:
تیر
ناهید
زمین
بهرام
مشتری - اقمار مهم مشتری عبارت‌اند از: گانیمید- اروپا-یو- کالیستو- و نزدیکترین قمر به سطح آن آمالته آ است.
کیوان - میماس و تیتان. ولی مهم‌ترین قمر آن تیتان است که حتی از عطارد بزرگ‌تر است.
اورانوس
نپتون - هشت قمر دارد؛ دو قمر به نامهای تریتون و نرئیداز دیگرقمرها بزرگ‌ترند. اما نرئید از سطح سیاره بسیار دور است.
(اورانوس و نپتون چون در چند سدهٔ اخیر کشف شده‌اند تنها نام‌های اروپایی دارند.)
سیاره‌های کوتوله
پلوتون- قمر آن شارون است که بیشتر شبیه یک جفت برای سیاره است تا یک قمر.
سرس
۲۰۰۳ یو‌بی۳۱۳ (این اسم موقت است)
تیر (سیاره)
تیر(یا عطارد)، Mercury واژه لاتین که در مقابل نام یونانی هرمس است. خدائی که پیغام برنده برای خدایان دیگر بوده و به همین دلیل هرمس در اغلب تصاویر با صندلهای بالدار کشیده می‌شود. علاوه بر پیغام‌رسانی، او نگهدار بازرگانان و مسافران بود.
سیاره عطارد (سیاره تیر) نزدیکترین سیاره منظومه شمسی به خورشید است. به خاطر نزدیکی این سیاره به خورشید اگر در طرف رو به خورشید آن (بخشی که روز است) قرار بگیرید به راحتی در دمای ۴۶۵‌ سانتیگراد پخته خواهید شد و به علت حرکتی وضعی آرامش اگر در طرف شب آن قرار بگیرید آن قدر سرد خواهد شد که در دمای ۱۴۸- سانتیگراد به راحتی مرگ را بر اثر یخ بستن تجربه میکنید.
به خاطر دهانه‌های آتشفشانی و آبگیرها خیلی شبیه کرهماه است. دانشمندان فکر می‌‌کردند که فعالیتهای آن مانند کره ماه است. اما اکنون می‌‌دانیم که سیاره عطارد با کره ماه بسیار متفاوت است.
سیاره عطارد قمر ندارد. عطارد کوچک‌ترین سیاره منظومه شمسی است و جو بسیار کوچکی دارد. بادهای خورشیدی به شدت به عطارد می‌‌دمند و این می‌‌رساند که تقریباً هیچ هوایی در آن وجود ندارد.
مشخصات سیاره عطارد
قطر به کیلومتر : ۴۸۷۸
فاصله از خورشید به کیلومتر : ۷۵۹۱۰۰۰۰
جرم بر حسب سانتیمتر بر گرم : ۴/۵
مدت زمان گردش به دور خود : ۵۹ روز
مدت زمان گردش به دور خورشید : ۸۸ روز
اتمسفر : ندارد
میانگین دما : روز:۴۲۷ شب:۱۸۰- (سانتیگراد)
قمر یا حلقه : ندارد
حالت (غالب) : جامد
ناهید (سیاره)
ناهید یا زهره دومین سیاره منظومه شمسی (به ترتیب فاصله از خورشید) است. دارای ابرهای ضخیمی است که سطح آن را غیر قابل رویت می‌کند و قسمت زیادی از گرمای خورشید را جذب می‌کند. این جذب اضافی گرما، که به سبب پدیده گلخانه‌ای صورت می‌گیرد، گرمای متوسط آن‌را بیشتر از هر سیاره دیگری در سامانه خورشیدی کرده است. زهره از خیلی جهات شبیه زمین است. ناهید دارای آتشفشانهای فعال، "ناهید‌لرزه" و کوهواره است. تفاوت بزرگ ناهید با زمین جو آن است که آن را آنقدر گرم کرده است که در آن زندگی غیر ممکن است (دمای میانگین ۴۴۹ درجه سانتی گراد).
ناهید قمر ندارد.
چون ناهید و زمین اندازه تقریباً یکسانی دارند آن‌را خواهر زمین نامیده اند. سالها دانشمندان فکر می‌‌کردند که در ناهید گیاهان و جانواران و حتی موجوداتی شبیه انسان وجود دارند. اکنون می‌دانیم به علت گرمای بسیار زیاد زهره در آن حیات وجود ندارد.

 

نگاه اجمالی
ناهید یکی از سیاره‌هایی است که می‌توان آن را به آسانی در آسمان پیدا کرد. ناهید گاهی 'ستاره شام' نامیده می‌شود. این سیاره درخشان بیش از هر سیاره دیگر، به زمین نزدیک می‌شود و در نزدیکترین نقطه به 42 میلیون کیلومتری ما می‌رسد. در روشنترین حالت، پس از ماه، درخشنده‌ترین جرم آسمانی است. هنگام طلوع خورشید در مشرق دیده می‌شود و هنگام غروب خورشید در مغرب. شعاع ناهید نزدیک به 6100 کیلومتر و چگالی آن 501 گرم بر سانتی‌متر مکعب است.
سیاره دوقلوی زمین
ناهید دومین سیاره خاکی از طرف خورشید و نزدیکترین سیاره به زمین است. ناهید در فرهنگ غرب ونوس 'الهه عشق' نامیده می‌شود و شباهت زیادی در اندازه و جرم به زمین دارد. ناهید و زمین دوقلو هستند، زیرا جرم و اندازه تقریباً یکسانی دارند. با وجود این در سایر جهات به مقدار زیادی متفاوت هستند.
جو ناهید
جو زمین و ناهید بسیار متفاوت است. اکسیژن و نیتروژن گازهای اصلی جو زمین هستند، ولی در جو ناهید، گاز مسموم کننده دی‌اکسیدکربن وجود دارد. در بالای جو ناهید، حتی ابرهایی از اسید سولفوریک نیز یافت می‌شود. یکی از ویژگیهای مهم جو زهره آن است که مانند شیشه گلخانه عمل می‌کند. شیشه‌های گلخانه، پرتوهای پرانرژی خورشید را به درون گلخانه راه می‌دهند و در نتیجه خاک گرمای کافی به‌دست می‌آورد. اما این شیشه‌ها از خروج انرژی که به وسیله خاک و گیاهان تولید می‌شود، جلوگیری می‌کنند. از این رو، انرژی در گلخانه حفظ می‌شود و دمای آنجا بالا می‌رود اثر گلخانه‌ای.
گرمای به دام افتاده
در اثر گلخانه‌ای، گرمای منعکس شده ازسطح سیاره توسط جو سیاره به دام می‌‌افتد. مانند حفظ گرما در گلخانه ها.
در ناهید نیز گاز چگال دی‌اکسید کربن تقریباً همین رفتار را دارد. حفظ شدن گرما در آن، دمای ناهید را به 500 درجه سانتیگراد می‌رساند، که از دمای سطحی عطارد (نزدیکترین سیاره به خورشید) نیز بیشتر است. در جو ناهید، به قدری دی‌اکسیدکربن وجود دارد که فشار ناشی از آن، حدود یکصد برابر فشار جو زمین است. این فشار برابر است با فشاری که در عمق یک کیلومتری اقیانوسهای زمین وارد می‌شود. حرکت ظاهری تقریباً چرخش دایره‌ای (e=0.0068) مدار زهره نسبت به دایره‌البروج 3.39 درجه شیب دارد و دارای نیم قطر اطول 0.7233 Au و دوره تناوب مداری نجومی 224.70 شبانه‌روز است. در هر مدار زهره، عطارد و زمین سیاره‌های فوق‌العاده درخشانی هستند. مطالعات انتقال دوپلری راداری نشان می‌دهند که سیاره‌ای با یک دوره تناوب نجومی‌ 243.01 شبانه‌روز با حرکت برگشتی می‌چرخد و شیب صفحه مدار نسبت به استوایش فقط 3 درجه است. چرخش این سیاره به دور محور خود، معکوس است و یک دور آن 243 روز زمینی طول می‌کشد. در حالی که در 225 روز، یک بار خورشید را دور می‌زند. روز خورشیدی در زهره برابر 118 روز زمین است، یعنی هر سال آن دو شبانه‌روز طول می‌‌کشد
مشخصه‌های فیزیکی
فاصله متوسط از خورشید 108/20 کیلومتر قطر استوا 12104 کیلومتر مدت حرکت وضعی 243/01 روز زمینی مدت حرکت انتقالی 224/70 روز زمینی سرعت مداری 35/03 کیلومتر در ثانیه دمای سطحی 480 درجه سانتیگراد جرم زمین=1 0/81 چگالی متوسط آب=1 5/25 جاذبه زمین=1 0/93 تعداد قمر 0
فاصله زمین تا ناهید
فاصله زمین تا ناهید را می‌توان مستقیما توسط رادار اندازه گرفت، سپس شعاع فیزیکی آن را از روی قطر زاویه‌ای بدست آورد. ناهید دارای شعاع 6052 کیلومتر است که فقط 5 درصد از شعاع زمین کوچک‌تر است. زهره مانند عطارد هیچ قمر طبیعی شناخته شده‌ای ندارد و بنابراین تنها وقتی که یک فضاپیما از آن می‌گذرد، یا آن را دور می‌زند، می‌توان به دقت جرم آن را محاسبه کرد. بسیاری از سفینه‌های فضایی که سعی داشتند در سطح ناهید فرود آیند در اثر تراکم جو و گرمای زیاد آن نابود شده‌اند، ولی سرانجام در 1975 میلادی (1354شمسی) دو سفینه روسی، که شبیه به دستگاههای اکتشاف اعماق دریا بودند، نخستین عکسها را با موفقیت از سطح آن به زمین مخابره کردند. در این عکسها، منظره‌ای از صخره‌های تیز و نمودهای هموار دیده می‌شود. اندازه بیشتر صخره‌ها از 30 تا 60 سانتیمتر است. اشکال سطحی سطح زهره را با ارسال خاک‌نشین‌هایی برای عکسبرداری یا انتشار علامتهای راداری برای نقشه‌برداری از عوارض آن می‌توان مورد بررسی قرار داد. این کار اخیر فلات بلند، آتشفشانهای غول پیکر، حفره‌های بهم فشرده و شکافهای طولانی دره‌ها را آشکار کرده است. سرتاسر زهره کاملاً مسطح به نظر می‌رسد. اختلافات ارتفاعات سطحی کوچکند و به استثنا تعداد کمی از ‌نواحی مرتفع، آنها 2 تا 3 کیلومتر ارتفاع دارند.
در سطح ناهید اختلاف بین سطوح بلند و پست 112 کیلومتر است. در حالی که این اختلاف برای ماه و عطارد 4 کیلومتر و برای مریخ 25 کیلومتر و برای زمین 9 تا 20 کیلومتر است. سیمای نقشه‌برداری شده زهره، در دو نیمه جنوبی و شمالی، بطور قابل توجهی با یکدیگر اختلاف دارد. ناحیه شمال، کوهستانی با فلاتهای مرتفع بدون آتشفشان است. در مقابل، قسمت جنوبی، شامل سطح نسبتاً تخت آتشفشانی زمینی است. میدان مغناطیسی یک هسته آهن _ نیکل که قسمتی از آن مایع است، در مقایسه با زمین، دلالت بر این دارد که بایستی زهره یک میدان مغناطیسی داشته باشد. چون زهره 43 مرتبه آهسته‌تر از زمین می‌چرخد، انتظار داریم که دیناموی ذاتی آن ضعیف‌تر و شدت میدان مغناطیسی آن کمتر از زمین باشد، اما تا به امروز هیچ وسیله‌ای هیچگونه میدان مغناطیسی‌ای را آشکار نکرده است. اگر میدان مغناطیسی وجود داشته باشد، اندازه‌گیری‌ها دلالت می‌کنند که بایستی حداقل 14-10 برابر میدان مغناطیسی زمین باشد، اما این مقدار خیلی ضعیفتر از میدان مغناطیسی است که از یک مدل دیناموی ساده انتظار می‌رود.
یک توضیح ممکن آن است که: می‌دانیم که میدان مغناطیسی ضرورتا صفر است. بنابراین، ممکن است وضعیت کنونی زهره نیز چنین باشد (معکوس شدن اخیر قطبهای زمین تقریباً هر یک میلیون سال یا در آن حدود اتفاق افتاده است). تحول سطح
پوسته ناهید همان‌طور که تحت تأثیر ظهور دره‌های تنگ و عمیق، جایی که صفحات کمی ‌جدا شده‌اند و نیز جلگه‌های کوهستانی مرتفع، محلی که صفحات با هم تصادم کرده‌اند، قرار گرفته است. این صفحات مقداری جابه‌جایی‌های سطحی نیز دارند. ناحیه حفره‌ای پراکنده شده زمینی بر این دلالت دارد که حرکات صفحات سطحی یک فرآیند گسترده سیاره‌ای نبوده‌اند. در صورتی‌که، بر روی زمین این چنین بوده است.
تاریخ اولیه زهره (دیرتر از چهار میلیارد سال قبل) بایستی از تاریخ زمین پیروی کرده باشد، زیرا این دو سیاره، چگالی، جرم و اندازه‌های مشابهی دارند. حدس می‌زنیم که زهره در حدود 4.6 میلیارد سال قبل با سایر سیارات خاکی شکل گرفته باشد. لایه‌های داخلی زهره، همان طور که برای زمین اتفاق افتاده است، به سبب گرمای داخلی تشکیل شده‌اند. رصد زهره فضاپیماها توانسته‌اند با استفاده از رادار، نقشه 98 درصد سطح سیاره زهره را ترسیم کنند. روی هم رفته، سطح زهره صاف تر از سطح زمین است و صحراهای داغ و دشتهای وسیع آتشفشانی حدود دو سوم سیاره را پوشانده اند. نواحی فلاتی متعددی نیز به ارتفاع چند کیلومتر در دشتها وجود دارند. ناحیه کوهستانی ماکسول مونته با ارتفاعی حدود 11 کیلومتر (8/6 مایل) بیش از حد متوسط ارتفاع، مرتفع‌ترین نقطه سیاره زهره است. آتشفشانها در تمام سطح سیاره پراکنده شده‌اند که وسعت بعضی هایشان به 160 کیلومتر (10 مایل) می‌‌رسد.
اگر از بالای قطب شمال نگاه کنیم خواهیم دید که اکثر سیارات و قمرهای منظومه شمسی به دور محور خود چرخیده و در جهت عکس عقربه‌های ساعت به دور خورشید در حال گردش‌اند. اما جهت چرخش سیاره زهره برخلاف سایر سیارات، در جهت عقربه‌های ساعت است. دلیل قطعی این امر هنوز مشخص نیست، اما به نظر بعضی ستاره شناسان جهت چرخش سیاره زهره نیز زمانی مانند سایر سیارات بوده، اما بر اثر تصادم با یک سیاره یا سیارک دیگر، این جهت معکوس شده است.
روند شبیه سازی سایر سیارات به زمین، زمین سازی نامیده می‌شود. به نظر بعضی دانشمندان این روند می‌تواند با کاشت هاگهای گیاهی در جو سیاره زهره شروع شود. در مورد اینکه یک موجود زمینی بتواند در دمای سیاره زهره زنده بماند تردید وجود دارد. ولی فرض بر این است که هاگهای دی‌اکسید کربن موجود در جو زهره را جذب کرده، از طریق فتوسنتز اکسیژن آزاد خواهند کرد. این کار منجر به زنجیره‌ای از حوادث شده و احتمالاً شرایط حیاتی مناسبتری از آنچه ما از آن مطلع هستیم بوجود آید.
زمین
زمین سومین سیارهٔ منظومهٔ شمسی است .فاصلهٔ زمین ازخورشید به اندازه‌ای است که کره دمای مناسبی را برای زندگی انسان ماگیاهان و جانوران فراهم می‌‌سازد. یعنی بر روی کمربند حیات قرار گرفته است.
سیارهٔ زمین از دور به رنگ آبی و سفید دیده می‌شود که وقتی به این سیاره نزدیک می‌‌شویم می‌‌فهمیم قسمت‌های آبی اقیانوس‌ها قست‌های سفید ابرها هستند. زمین سیاره ایست تشکیل شده از انواع سنگ‌ها و مقدار بسیار زیادی آب و دارای جوی با نیتروژن و اکسیژن زیاد است.(یک پنجم اکسیژن و چهار پنجم نیتروژن). این سیاره در فاصلهٔ 150 میلیون کیلومتری از خورشید به دور آن گردش می‌‌کند. زمین از نظر فاصله از خورشید در بین زهره (یا ناهید) و مریخ (یا بهرام) قرار دارد و جزو سیارات داخلی منظومه شمسی محسوب می‌‌شود مرتفع ترین نقطه بر روی خشکی های زمین نزدیک به 9 کیلومتر از سطح دریا بلند تر است .عمیق ترین قسمت دریاهادر مجاور جزایر فیلیپین در اقیانوس آرام است.عمق این ناحیه حدود 11 کیلومتر از سطح دریا است
حرکات چند گانه زمین
حرکت انتقالی زمین به دور خورشید
سرعت این حرکت زمین در مدار خود به دور خورشید یکسان نیست ودر نزدیکی خورشید بیشتر میشود.از اثرات این حرکت ایجاد یک سال شمسی شکل گرفتن فصول مختلف و تغییر ظاهری چهره ی آسمان شب در طول سال است مدت این چرخش 365.25 روز است و سرعت زمین در این مدار 30کیلومتر بر ثانیه است.
حرکت وضعی
حرکت زمین به دور محور شمالی و جنوبی آن مدت این چرخش 23ساعت و56دقیقه و4ثانیه است
حرکت رقص محور
این حرکت درواقع که ارزش سینوسی در مدار زمین است که بواسطه چرخش ماه (قمر زمین) بدور این کره ایجاد می شود. ماه تقریبا هر 29 روز یک دور به دور زمین می چرخد. با توجه به اینکه جرم ماه بسیار کمتر است لذا تنها یک لرزش سینوسی در مدار زمین ایجاد می کند.
مشخصات
قطر به کیلومتر : 12756 فاصله از خورشید به کیلومتر 149500000 جرم یک سانتیمتر بر گرم : 5/5 مدت زمان گردش به دور خود : حدود 24 ساعت مدت زمان گردش به دور خورشید : 365 روز و6ساعت اتمسفر : رقیق میانگین دما : 15 (سانتیکراد) سرعت حرکت به کیلومتر بر ثانیه : 30 قمر یا حلقه : یک قمر حالت (غالب) : جامد
بهرام (سیاره)
بهرام یا مریخ چهارمین سیاره در سامانه خورشیدی است. جو بهرام سرخ‌فام است و در آسمان شب از زمین نیز سرخی آن دیده می‌شود. کره بهرام دو ماه کوچک به نام‌های فوبوس و دِیموس دارد که شکلی نامنظم دارند. این دو ماه احتمالاً شهابسنگ‌هایی هستند که در مدار بهرام به دام افتاده‌اند.
بهرام، سیاره سرخ فام منظومه شمسی، نصف زمین قطر دارد و مساحت سطح آن برابر با مساحت خشکی‌های روی زمین است. همانند زمین، یخ‌های قطبی، دره‌های عمیق، کوه، غبار، طوفان و فصل دارد. در دشت‌های آن مانند ماه، گودال‌هایی حاصل از برخورد سنگ‌های آسمانی دیده می‌شود. با وجود اندازه کوچکش، بلندترین کوه و بزرگ‌ترین دره منظومه شمسی در این سیاره پیدا شده‌است.
جوّ زمین شامل ۷۷ درصد نیتروژن و ۲۱ درصد اکسیژن است. درحالی که در جو مریخ ۹۵ درصد دی اکسید کربن و فقط ۲۰ درصد اکسیژن وجود دارد. جو سیاره سرخ بسیار رقیق است، به طوری که فشار جوی سطح آن، معادل یک صدم فشار جو زمین در سطح دریاست. علاوه بر این جو مریخ محافظ خوبی در برابر تابش‌های مرگبار فضایی نیست.
به دلیل رقیق بودن «هوای» مریخ، دمای هوا به سرعت تغییر می‌کند. مثلاً فقط لحظاتی پس از طلوع خورشید دما در سطح بیش از ۲۰ افزایش می‌یابد. جالب تر آنکه در هر لحظه دمایی که پای شما احساس می‌کند (هوای نزدیک سطح) با دمای هوای اطراف سر شما ممکن است تا ۲۰ درجه اختلاف داشته باشد. به این ترتیب اگر روی استوای مریخ باشید، دمای سطح ۲۰ درجه سلیسیوس و دمای اطراف سر شما صفر درجه‌است.
مریخ. نام ستارهٔ فلک پنجم از ستاره‌های خنس و آن را بهرام نیز گویند، منحوس و دال بر جنگ و خصومت و خونریزی و ظلم است. (منتهی الارب). کوکبی است از جملهٔ سبعهٔ سیاره و در آسمان پنجم است. (برهان). ستاره‌ای است از خنس، گویند سبب تسمیهٔ آن سرعت سیرش است و برخی گویند بسبب رنگ زرد و سرخ آن است که شبیه مرداسنج (مردار سنگ) باشد. (از اقرب الموارد). چهارم کوکب سیار در عالم شمسی که بهرام نیز گویند و به اعتقاد بطلمیوس کوکب سیاری که در آسمان پنجم واقع شده‌است. (ناظم الاطباء). از کواکب سبعهٔ سیاره‌است و مأخوذ از مرخ و آن درختی است که از چوب آن آتش‌زنه سازند و سبب تسمیهٔ آن تشبیه به آتش است از نظر سرخی، و گویند مریخ در لغت عبارت از تیر بدون پر است که در حرکت خود پیچ و تاب میخورد و ستارهٔ مذکور نیز بسبب به چپ و راست رفتن در حرکت بدین نام خوانده شده مریخ در فلک پنجم است و فاصلهٔ آن از زمین سه هزار هزار و نهصد هزار و دوازده هزار و هشتصد و شصت و شش میل است. (از صبح الاعشی ج ۲). از کلدانی مَرداخ، و شاید اصل مرداخ نیز فارسی باشد، یا فارسی و کلدانی از مرد (رجل) و آک به‌معنی اسب به فارسی یا به کلدانی. یکی از پیکرهایی که یونانیان باستان برای مریخ می‌پنداشتند اسب بود، و واژه مارس از همین مریخ آمده‌است یعنی مرداخ و مرداس نامی است که به پدر ضحاک میداده‌اند و این نام در میان عرب بسیار است.
نام‌های دیگر بهرام در زبان عربی: مریخ، بِخون. کوکب القاهر. غضبان. حصار. ترک فلک. (دهار). ترک معربد. نحس اصغر. خانس. خنس. سیارة. کانسر. (دهار). در کتاب‌های قدیمی فارسی آن را فلک شحنهٔ پنجم و سایس رواق پنجم نیز نامیده‌اند.
جدول مشخصات مریخ
مشخصات مداری (ژانویه 2000)
نیم قطر بزرگ 227،936،637 کیلومتر
141،632،976 مایل
1.523،662،31 واحد نجومی
پیرامون مدار 1،429،000،000 کیلومتر
887،900،000 مایل
9.553 واحد نجومی
خروج از مرکز 0.093،412،33
حضیض 206،644،545 کیلومتر
128،402،967 مایل
1.381،333،46 واحد نجومی
اوج 249،228،730 کیلومتر
154،863،553 مایل
1.665،991،16
تناوب مداری 686.9600 روز
1.8808 سال
تناوب هلالی 779.69 روز
2.135 سال
سرعت مداری:
~میانگین
~بیشینه
~کمینه
24.077 کیلومتر در ثانیه (53.859 مایل در ساعت)
26.49 کیلومتر در ثانیه (59.277 مایل در ساعت)
21.972 کیلومتر در ثانیه (49.150 مایل در ساعت)
تمایل نسبت به:
~صفحه مداری زمین
~صفحه استوایی خورشید
1.850،61 درجه
5.65 درجه
طول دایره البروجی اعتدال بهاری 49.578،54 درجه
شناسه حضیض 286.462،30 درجه
تعداد ندیم های طبیعی 2
مشخصات فیزیکی (ژانویه 2000)
قطر استوایی 6,804.9 کیلومتر
4،228.4 مایل
0.533 برابر قطر زمین
قطر قطبی 0.533 برابر قطر زمین
4،197.2 مایل
0.531 برابر زمین
پخی 0.007،36
مساحت سطح 144،798،465 کیلومتر مربع
55,906,771 مایل مربع
0.284 برابر زمین
حجم 1.631،8×1011 کیلومتر مکعب
0.151 برابر زمین
جرم 6.418،5×1023 کیلوگرم
0.107 برابر زمین
چگالی متوسط 3.934 گرم در سانتیمتر مکعب
گرانش استوایی 3.69 متر در مجذور ثانیه
0.376 برابر زمین
سرعت فرار 5.027 کیلومتر در ثانیه
11.245 مایل در ساعت
تناوب گردش 1.025،957 روز
24.622،962 ساعت
تمایل محور 25.19 درجه
بعد سرسو در قطب شمال 317.681،43 درجه
21:10:44
بازتاب 0.15
دمای سطحی:
~کمینه
~متوسط
~بیشینه
140- درجه سانتی گراد (133 درجه کلوین)
63- درجه سانتی گراد (210 درجه کلوین)
20 درجه سانتی گراد (239 درجه کلوین)
مشخصات جوی
فشار جوی 0.7 تا 0.9 کیلو پاسکال
دی اکسید کربن 95.72 درصد
نیتروژن 2.7 درصد
آرگون 1.6 درصد
اکسیژن 0.13 درصد
مونو اکسید کربن 0.07 درصد
بخار آب 0.03 درصد
اکسید نیتریک 0.01 درصد
نئون 0.00025 درصد (2.5 ذره در هر میلیون)
کریپتون 0.00003 درصد (300 ذره در هر بیلیون)
زنون 0.000008 درصد (80 ذره در هر بیلیون)
ازن 0.000003 درصد (30 ذره در هر بیلیون)
مشتری (سیاره)
هرمز یا مشتری یا برجیس بزرگ‌ترین سیاره سامانه خورشیدی است. از نظر فاصله از خورشید، مشتری پنجمین سیاره بعد از تیر و ناهید و زمین و مریخ است.
نگاه کلی
معمولا مشتری چهارمین شی درخشان آسمان می‌باشد (بعد از خورشید، ماه و زهره) اگرچه بعضی اوقات مریخ درخشان‌تر به‌نظر می‌آید.
جرم مشتری ۲٫۵ بار از مجموع جرم سیارات منظومه شمسی بیش‌تر است. جرم مشتری ۳۱۸ بار بیش‌تر از جرم زمین است. قطر آن ۱۱ برابر قطر زمین است. مشتری می‌تواند ۱۳۰۰ زمین را درخود جای دهد. میانگین فاصله آن از خورشید در حدود ۷۷۸ میلیون و ۵۰۰ هزار کیلومتر می‌باشد یعنی بیشتر از ۵ برابر فاصله زمین از خورشید. ستاره‌شناسان با تلسکوپ‌های مستقر در زمین و ماهواره‌هائی که در مدار زمین می گردند به مطالعه مشتری می پردازند. ایالات متحده تا کنون ۶ فضاپیمای بدون سرنشین را به مشتری فرستاده است. در ژوئیه ۱۹۹۴، هنگامی که ۲۱ تکه از دنباله دار شومیکر-لوی ۹ با اتمسفر مشتری برخورد نمود ستاره‌شناسان شاهد رویدادی بسیار تماشائی بودند. این برخورد باعث انفجارهای مهیبی شد که بعضی از آن‌ها قطری بزرگتر از قطر زمین داشت.
خصوصیات فیزیکی
مشتری گوی غول پیکری از مخلوط گاز و مایع است و احتمالا مقداری سطح جامد دارد. سطح سیاره از ابرهای ضخیم زرد، قرمز، قهوه‌ای و سفید رنگ پوشیده شده است. مناطق روشن رنگی «ناحیه» و قسمتهای تاریک تر «کمربند» نامیده می‌شوند. کمربندها و ناحیه‌ها به موازات استوای سیاره قرار دارند.
مدارو چرخش
مشتری در یک مدار کمی بیضی شکل یک دور به دور خورشید می‌زند که ۱۲ سال زمینی طول می‌کشد. همچنان که سیاره به دور خورشید می گردد، به دور محور فرضی خود نیز می گردد. چرخش مشتری به دور خود سریع‌تر از هر سیاره دیگری است. چرخش مشتری به دورخود ۹ ساعت و ۵۶ دقیقه به طول می انجامد (مقایسه کنید با چرخش ۲۴ ساعته زمین به دور خود.) دانشمندان نمی‌توانند به طور مستقیم سرعت گردش داخلی سیارات گازی شکل را اندازه‌گیری کنند و به طور غیر مستقیم اندازه گیری می کنند. ابتدا سرعت متوسط چرخش ابرهای قابل مشاهده را اندازه‌گیری می‌نمایند. مشتری به قدر کافی امواج رادیویی ارسال می‌کند که به وسیله رادیو تلسکوپ‌های زمینی دریافت گردد. در حال حاضر دانشمندان از اندازه امواج برای محاسبه سرعت جرخش مشتری استفاده می نمایند. قدرت امواج تحت تاثیر میدان مغناطیسی سیاره در یک الگوی ۹ ساعت و ۵۶ دقیقه‌ای که تکرار می گردد تغییر می نماید زیرا سرچشمه میدان مغناطیسی هسته سیاره می‌باشد. این تغییرات نشان دهنده میزان سرعت جرخش داخلی سیاره می‌باشد. جرخش سریع مشتری باعث برآمدگی در استوا و پخی در قطب‌های آن می شود. قطر استوا ۷ درصد بیشتر از قطر قطب‌ها می‌باشد.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  53  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله سیاره ها و ستاره ها

پاورپوینت سیاره عطارد 17اسلاید

اختصاصی از حامی فایل پاورپوینت سیاره عطارد 17اسلاید دانلود با لینک مستقیم و پر سرعت .

پاورپوینت سیاره عطارد 17اسلاید


پاورپوینت سیاره عطارد 17اسلاید
در سال‌ ۱۹۷۴ میلادی، سفینهٔ مارینر ١٠ آمریکا، از نزدیکی سیارهٔ تیر گذشت و توانست ۶۴۸ عکس خوب، از حدود ۵۰٪ سطح سیاره، که در آن هنگام در برابر خورشید واقع شده بود، گرفته و مخابره کند.عکس‌ها نشان می‌دهند که سطح تیر نیز چون ماه، دارای کوه‌ها و نیز دره‌های فراوانی است که به نظر می‌آید به علت بمباران مداوم صدهاهزار سنگ آسمانی صورت گرفته باشد.زمان این بمباران‌ها شاید بلافاصله پس از پیدایش و تکوین دستگاه خورشیدی بوده‌است.
عکس‌هایی که فضاپیمای «مسنجر» ناسا از عطارد برداشته‌است شواهد فعالیت «گسترده» آتشفشانی بر سطح این سیاره را آشکار می‌کند.[۶]
در تیر، درهٔ بزرگی به قطر تقریبی ۱٬۳۰۰ کیلومتر وجود دارد که اطراف آن را کوه‌های به نسبت بلندی که ارتفاع برخی از آن‌ها به یک و نیم کیلومتر نیز می‌رسد، احاطه کرده‌اند.برخی از این گودی‌ها، شاید به علت جریان مواد مذاب آتشفشانی قدیمی، صاف و تیز شیار شیار شده‌اند.
ارتباط با مارینر ۱۰ در ۲۴ مارس ۱۹۷۵ قطع شد.این سفینه اولین و تنها سفینه‌ای بوده‌است که تا امروز به مقصد تیر روانه شده‌است.
در بررسی‌هایی که در سال ۱۹۹۰م از روی زمین در مورد سیارهٔ تیر به عمل آمد، دیده شد که دو ناحیه بر روی سطج این سیاره از نقاط دیگر بسیار داغ ترند، علت آن را تأثیِر توأم گردش‌های وضعی و انتقالی تیر در حفظ گرمای گرفته شده از خورشید دانستند. زیرا مدت یک شبانه روز در تیر دو سوم مدت یک سال آن است .

تیر بر خلاف اندازهٔ کوچکی که دارد، بسیار سنگین است و از این جهت ستاره‌شناسان معتقدند، در زیر پوستهٔ سنگی نازک این سیاره، هستهٔ مرکزی بزرگی ساخته شده از آهن، وجود داشته باشد


دانلود با لینک مستقیم


پاورپوینت سیاره عطارد 17اسلاید

سیاره مشتری

اختصاصی از حامی فایل سیاره مشتری دانلود با لینک مستقیم و پر سرعت .

سیاره مشتری


سیاره مشتری

 

 

 

 

 

 

 

مقاله با عنوان سیاره مشتری در فرمت ورد و شامل مطالب زیر می باشد:

سیاره مشتری
ویژگی های فیزیکی مشتری
مدار و گردش
جرم و چگالی
دما
میدان مغناطیسی
اقمار
حلقه ها
برخورد سنگ آسمانی شومیکر-لوی 9
پرواز به مشتری
منابع


دانلود با لینک مستقیم