فرمت سوالات:word
آزمون طراحی سازه های سه بعدی با نرم افزار safe
تکنولوژی سازه ای در اسکلت ساختمان های بلند، شامل سیستم های سازه ای متنوع است که در ساخت مورد استفاده قرار می گیرد. هرکدام از این سیستم ها بسته به طرح معماری و نوع کاربری ساختمان دارای مزایا و معایبی هستند که با توجه به شرایط بنا و امکانات ساخت هر کشوری می توان از این سیستم ها در اسکلت سازه استفاده نمود. انتخاب سازه یک ساختمان بلند فقط براساس رفتار و طرز عمل خود سازه صورت نمی گیرد. این انتخاب تابع عوامل متعددی است که می تواند در انتخاب نوع سیستم سازه ای مؤثر باشد. درمقاله حاضر با توجه به بررسی سازه های بلند ساخته شده در کشور نمونه موردی برج مخابراتی میلاد و عواملی که در اجرای سیستم های سازه های بلند تأثیرگذار است مورد بررسی قرار گرفته است. در رابطه با بررسی عوامل موردنظر در ابتدا به وزن ساختمان اعم از وزن اسکلت سازه و وزن مصالح مصرفی پرداخته شده است، سپس به موضوع طراحی سازه اشاره شده و با توجه به نوع اسکلت و پیش ساخته کردن آن نقش این امر در سرعت اجرای سازه مورد بررسی قرار گرفته است. همچنین به نقش مهم فضای معماری در سازه پرداخته شده و راحتی و سهولت اجرای سازه های بلند فلزی از جنبه صنعتی کردن سیستم ها مورد بررسی قرار گرفته و با توجه به نقش مهم نیروهای جانبی در سازه به عملکرد سازه در مقابل این نیروها پرداخته شده است. در انتها نیز توصیه هایی در رابطه با سازه های بلند مرتبه فلزی به عنوان نتیجه گیری در حد این مقاله اشاره شده است.
انتخاب سازه یک ساختمان بلند فقط براساس رفتار و طرز عمل خود سازه صورت نمی گیرد. این انتخاب تابع عوامل متعددی است که می تواند در انتخاب نوع سیستم سازه ای مؤثر باشد. در مقاله حاضر عواملی که در اجرای سیستم های سازه های بلند فلزی تأثیرگذار است، مورد بررسی قرار گرفته است.
کلید واژه ها:
همانطور که دست اندر کاران امر ساخت و ساز کمابیش مطلعند، پس از پیروزی انقلاب تا اوایل دهه 70 بلند مرتبه سازی در کشور متوقف شد و حدودا از اواخر سال 1369 بود که این روند از سرگرفته شد و این از سرگیری عمدتا به خاطر سرمایه های مالی سرگردان داخلی و خارجی بود که با یک حرکت آزاد و البته تند خود به بازار ساخت و ساز بلند مرتبه (برج سازی) فرصت تامل و تحلیل را از کارشناسان امر سلب کرد و مصرف کننده های برج ها را دنباله رو خود ساخت!
دلایل عمده گرایش به ساخت وسازهای بلند عبارتند از
از آنجایی که ساختمان های مرتفع به عنوان نشانه های شهری سهم مهمی در شکل گیری ساختار فضایی و سیمای شهری ایفا می کنند، نیاز مبرمی به تنظیم معیارها و دستورالعمل های طراحی و نظارت بر اجرای مبتنی بر دستورالعمل های فوق در مورد این گونه بناها وجود دارد. این نظارت باید به گونه ای باشد که از توسعه ساختمان های بلندی که در تضاد با روند شکل گیری ساختار و سیمای مطلوب شهری در چارچوب اهداف طراحی و توسعه شهری و در زمینه های زیبا شناختی بصری و ادراکی هستند، ممانعت به عمل آورد.
- ضوابط کلی حاکم بر طراحی و ساخت ساختمان های بلند
- مکان یابی ساختمان های بلند
- مهمترین ضابطه ترافیکی و دسترسی که در مورد این بناها توصیه می شود این است که این سازه ها
حتی المقدور در فاصله 500 متری تا ایستگاه های اتوبوس یا 1000 متری از ایستگاه های مترو مستقر شوند و دیگر اینکه اتصال مستقیم ورودی بناهای بلند به آزادراه ها و بزرگراه ها ممنوع است مگر بناهای با اهمیت خاص.
ـ نسبت ارتفاع به عرض در ساختمان ها؛ اگر این نسبت 2 به 1 یا 1 به 1 یا 1 به 2 باشد، حالت پویا و دینامیک دارد ولی اگر این نسبت از 2 به 1 تجاوز کند، نوعی احساس ترس از تنگی فضا به انسان دست می دهد.
معمولا برای ساخت سازه های بلند، زمین های بزرگتر ارجح تر و مناسب ترند؛ لذا فرآیند بلند مرتبه سازی باعث می شود که روند افزایش قیمت زمین های کوچک قطع شده و بین قیمت تمام شده زمین ها با اندازه های متفاوت تعادل برقرار شود.
از طرفی با افزایش تعداد طبقات، تراکم ساخت بیشتر شده و مساحت زیر ساخت کل چند برابر می شود و به نسبت افزایش زیربنا، مسلما مقدار مساحت فضای باز (open space) کاهش پیدا می کند.
از جهت دیگر اصول زیبایی شناسی شهرهای جهان امروز بر تنوع فرم، شکل، مصالح و رنگ سازه استوار است؛ تنوع، عامل مهمی در بسط قوه تمیز و شناسایی آدمی است. یک شهر متنوع شهری خوانا است یعنی در چنین شهری می توان مکان ها را به آسانی پیدا کرد و از خصوصیات شهر متنوع داشتن این گونه سازه های بلند و مرتفع است. به گفته شینوهارا معمار ژاپنی شرط اصلی شکل گیری شهرهای متنوع زیبایی استوار بر نظم پیشرفته است.
در سالهای اخیر به دلیل نبود برنامه ریزی های اولیه و عدم اعمال روش های نظارت دقیق و علمی بر توسعه شهری، حتی محتمل ترین خصوصیت مثبت بناهای مرتفع یعنی فراهم کردن گستره دید وسیع و دلپذیر به مناظر شهری برای ساکنان نیز، می تواند به واسطه احداث بناهای مرتفع جدیدتر در فواصل نزدیک پیرامون بنا کاملا خدشه دار شود!
از مشکلات ناشی از احداث بی رویه ساختمان های بلند در دنیا می توان به موارد زیر اشاره کرد:
۱ - محروم شدن سکنه و همسایگان این نوع ساختمان ها از نور خورشید و روشنایی و تهویه طبیعی به دلیل برپا شدن برج هایی بزرگ به فاصله کم از همدیگر.
۲ - نزدیک بودن بیش از حد به خط کناری پیاده رو و نداشتن پس رفتگی که مانع رسیدن نور مستقیم به خیابان یا پیاده رو می شود .
۳ - ساخت و ساز غیر اصولی و بدون تطابق با اصول و قوانین ساختمان سازی که در صورت وقوع حوادثی مثل زلزله، جان و مال ساکنان را به شدت تهدید و نابود می کند.
در پایان امید، آن داریم که با نظارت صحیح و اصولی بر طراحی و اجرای بناهای مرتفع از جهات مختلف اعم از تناسبات و ترکیبات، نقش ساختمان در سیمای شهر، تداخل آن در خط آسمان از همه زوایای دید در اطراف ساختمان، طراحی فضاهای باز در اطراف این گونه بناها و ارتباط این فضاها با خیابان و بنا ، معماری سازه و هماهنگی آن با ساختمان های با ارزش همجوار و بافت محله، جزئیات نما، قرارگیری در سطح زمین، ارتفاع و شکل، توده وحجم، زمینه، رنگ، مصالح، کیفیت ظاهری، قابلیت انعکاس نور و…، از این پس دیگر شاهد ساخت و ساز غیراصولی بناهای مرتفعی که از دید معماری فاقد توازن بصری و از نظر مهندسی فاقد مقاومت کافی و لازم در برابر نیرو های خارجی و داخلی وارده بر ساختمان هستند، نباشیم؛ چه، اگر خدای ناکرده چنین شود، باید در آینده نه چندان دور، از بین رفتن جان و مال هزاران انسان بی گناه که قربانی سهل انگاری و ندانم کاری و البته بی قانونی می شوند را نظاره گر باشیم.
سیستم سازه ای برجهای هزاره سوم
در تشریح سیستم سازهای این برجها لازم است به دونکته اصلی توجه شود. در واقع این سیستم از دو بخش تقریباً مجزای ثقلی و لرزه بر تشکیل شده است. اصطلاحات لرزه بر و ثقلی بر اساس مقدار جذب برش نیروی زلزله توسط هر یک از سیستمها، به آنها نسبت داده شده است.
الف) سیستم لرزه بر: در طرح این برجها از دو سیستم لوله ای متداخل، به اضافه مهاربندی همگرا به عنوان بخش لرزه بر
ساختمان استفاده شده است . قابهای سیستم لرزه بر در پیرامون سازه قرار گرفتهاند؛ ضمن آنکه دو قاب لرزه بر میانی هم در یک جهت موجود میباشند
ب) سیستم ثقلی:
سیستم ثقلی که میان بخش لرزه بر محصور شده است، بر روی ستونهای میانی که تقریباً با راندمان 100% بطور ثقلی عمل میکنند، قرار گرفته است و تیرهایی که این ستونها را به سیستم لرزه بر پیرامونی مرتبط میکنند عموماً - به جز سه طبقه پایین - با اتصال ساده طرح شدهاند. با توجه به توضیحات فوق ملاحظه میشود، سختی این تیرها نقشی در نحوه توزیع بارهای جانبی نخواهد داشت و به این جهت در مدل، ساده سازی صورت گرفته است.
استفاده از تیرهای با مقطع متغیر در طرح تیرهای ثقلی علاوه بر صرفهجویی در مصالح، به جهت ایجاد مسیری مناسب برای عبور لولههای تأسیساتی صورت گرفته است و به این ترتیب نیازی به افزایش بیشتر ارتفاع طبقه نمی باشد.
سیستم سقف برجهای هزاره سوم
سقف این برجها از نوع کامپوزیت است و عملکرد دالهای آن به صورت دوطرفه میباشد.
همانطور که در گزارش مندرج در شماره پنجم ذکر شده مطالعات ژئوتکنیک، ژئوفیزیک، تهیه طبف ویژهِ ساختگاه، زهکشی و کنترل کیفیت عملیات بتنی این پروژه توسط مهندسان مشاور دریا خاک پی در دست انجام است.
مطالعات ژئوتکنیکی در محدوده احداث برجها
مطالعات ژئوتکنیکی به منظور تعیین خصوصیات خاک و لایههای زمین در محدوده احداث برجها به شرح زیر انجام پذیرفته است:
الف) مطالعات ژئوتکنیک اکتشافی تکمیلی
تعیین مشخصات فیزیکی و مکانیکی لایه های خاک
تعیین پارامترهای موثر در پایداری و تغییر شکل پذیری لایه های خاک
تعیین ظرفیت باربری و نشست خاک و پیشنهاد گزینه های مناسب پی
تعیین مشخصه های خاک جهت برآورد نیروی زلزله
شناسایی شرایط هیدروژئولوژیکی و آبگذارانی لایه های خاک
بررسی امکان وجود نابهنجاری های ژئوتکنیکی در محدوده مورد نظر
ب) مطالعات تهیه طیف ویژه ساختگاه
تعیین لرزه خیزی ساختگاه
تعیین مشخصات هندسی دینامیکی لایه های آبرفتی
انجام تحلیل بزرگنمایی حاصل از اثر وجود آبرفت
تهیه شتاب نگاشت طراحی در سطوح مختلف
تهیه طیف طراحی در سطوح مختلف لرزه ای در رقومهای موردنظر
بررسی نشست سازه
در بررسی نشست سازه شالوده گسترده در وسط ساختگاه، داده های مورد نیاز برای انجام این تحلیلها با استفاده از آزمایشهای برجا و آزمایشگاهی تعیین گردید.
اثر لایه سطحی خاک کم مقاومت در کف گود، با در نظر گرفتن یک لایه جدید با ضریب ارتجاعی نسبتاً کمتر مدل گردید.
با توجه به یکنواختی بافت زیر سازه، حداکثر نشست مجاز ساختمان 100 میلیمتر در نظر گرفته شده است. مقایسه نتایج محاسبات نشست بااستفاده از نرمافزار Plaxis نشان میدهد که حداکثر میزان نشست محاسبه شده از نشست مجاز (100 میلیمتر کمتر) میباشد.
سیستم پی
با توجه به نوع سیستم باربر جانبی برای برجهای شمالی، مرکزی و جنوبی که سیستم لوله ای درجداره خارجی هریک از برجها میباشد دو گزینه زیر برای پی برجها قابل بررسی است:
الف) سیستم پی گسترده برای هریک از برجهای شمالی، جنوبی و مرکزی؛ به طوریکه با درزهای انقطاع از یکدیگر مجزا گردیده باشند.
ب) سیستم پی گسترده یکپارچه و بدون درز انقطاع برای هر سه برج شمالی، جنوبی و مرکزی.
در سیستم گزینه الف با توجه به یکسان بودن برجها به لحاظ مشخصه های دینامیکی بروی خاک ناحیه درز به صورتی است که فشار زیاد برج مرکزی موجب می گردد که خاک زیر برج شمالی تحت اثر فشار قرار گرفته و پی برج شمالی تمایل به بلند شدن از روی آن داشته باشد.در صورتیکه از گزینه (ب) استفاده شود، 2 نیروی فشاری و کششی با یکدیگر متعادل گردید وتنشها در زیر پی و روی خاک توزیع یکنواخت تر خواهد داشت، لذا استفاده از پی گسترده یکپارچه برای بارهای جانبی منطقیتر میباشد. از طرف دیگر طولانی بودن پی موجب میگردد که تنشهای ناشی از درجه حرارت و جمع شدگی، باعث تأثیرات نامطلوبی در پی گردد و علاوه بر آن، چنانچه تحت اثر بارهای ثقلی غیر همزمان قرار گیرد، در پی، ایجاد تنش های زیاد بنماید. بنابراین بتن ریزی در زیر هر یک از برجها بصورت مجزا ودر عرض به فاصله 30 الی 50 سانتیمتر انجام گردیده است و پس از اعمال کلیه بارهای ثقلی و مرتفع شدن اثرات جمع شدگی ودرجه حرارت، این فاصلهها با بتن مرغوب به همراه مواد منبسط شونده پر میگردند.
بررسی مخاطره پذیری لرزهای منطقه
گستره تهران در کوهپایههای جنوبی کوههای البرز مرکزی قرار گرفته و شمالیترین فرونشست ایران مرکزی به حساب میآید. کوههای البرز در شمال تهران متشکل از یک سری چین خوردگیهای با امتداد شرقی- غربی است و شدت دگرریختی در دو کناره شمالی گسله تهران به بیشترین مقدار خود رسیده و بلندیهای البرز به ترتیب بر دشت کناری خزر در شمال و دشت تهران در جنوب رانده شده است.
از مهمترین گسلهایی که نزدیکترین فاصله تقریبی آنها از ساختگاه حدود کمتر از 10 کیلومتر میباشد میتوان موارد زیر را نام برد: گسل شمال تهران، گسل امامزاده داوود، پورگان وردیج، نیاوران، محمودیه، طرشت، عباس آباد، گسل تلویزیون، باغ فیض، نارمک و در محدوده ساختگاه موردنظر باتوجه به خاکبرداری قابل توجهی که انجام شده بود آثار گسلی مشاهده نگردید.
بررسی روند لرزه خیزی
بررسی روند لرزه خیزی این گستره بااستفاده از به کارگیری روش kijko در سه حالت انجام گرفته است:
حالت اول: بادر نظر گرفتن فقط لرزه های تاریخی
حالت دوم: با منظور نمودن لرزههای سده بیستم
حالت سوم: ترکیبی از مجموع حالتهای اول و دوم با در نظر گرفتن لرزه های تاریخی و لرزه های سده بیستم
احتمال عدم رویداد لرزه ای با بزرگی 7 ریشتر در طول مدت 50سال یا 100 سال به ترتیب حدود 60 و 35 درصد می باشد؛ یعنی برای سازه ای باعمر مفید 50 یا 100 سال می توان این احتمال عدم رویداد را در نظر گرفت.
بیشینه مقادیر شتاب قائم و افقی زمین
در مطالعات انجام شده با استفاده از برنامه seisrisk III بیشینه مقادیر شتاب زمین محاسبه شدهاند. اطلاعات دیگری نظیر رابطه طول گسلش و بزرگی مورد نیاز بوده است که آن نیز با استفاده از روابط شناخته شده جهانی (رابطه ولز - کاپراسمیت) به دست آمدهاند. بر اساس این محاسبات مقادیر شتاب افقی و قائم در سازه های زمانی مختلف (30، 50، 75 و 100سال) با احتمال فزونی خاص (50%، 37 %، 10%) برآورد شدهاند.
در صورتیکه عمر مفید سازه 50 سال فرض شود با در نظر گرفتن احتمال فزونی 37 درصد، مقادیر شتاب افقی و قائم به ترتیب0/63 g و0/72 g برآورد شده است.
بررسی پاسخ دینامیکی آبرفت
به این منظور به عنوان یک روش اندازهگیری سریع و اقتصادی در محل ساختگاه چهارگمانه با عمق های 65/75, 50 , 50 , 65/75 متر حفر گردید و لایههای آبرفت مورد آزمایش محل S.P.T قرارگرفته و نمونه های حاصله تحت آزمونهای آزمایشگاهی قرار گرفتند. این روش با دقت قابل قبولی سرعت انتشار امواج را در لایههای خاک به دست می دهد.
با استفاده ا
نوع فایل: pdf
تعداد صفحات: 178 صفحه
نکته مهم: برای دریافت فایل پایان نامه به صورت word «قابل ویرایش» با ما تماس بگیرید.
پایان نامه برای دریافت درجه ی کارشناسی ارشد «M.SC»
چکیده:
امروزه استفاده از سیستم های کنترل مکانیکی به منظور جلوگیری از ارتعاشات سازه های مهندسی عمران در مقابل زلزله بسیار مرسوم گردیده است.این سیستم ها را می توان به چهار گروه کنترل فعال ، کنترل غیر فعال ، کنترل نیمه فعال و کنترل مرکب تقسیم کرد.
در این رساله هدف طراحی سیستم کنترل فعال میراگر و جرم تنظیم شونده (ATMD) ، به منظور کاهش پاسخ ساختمان های بلند تحت اثر نیروی افقی زلزله می باشد . از آنجایی که منطق فازی در تعیین متغیرهای تصادفی دارای انعطاف پذیری خوبی می باشد ، مقادیر نیروی فعال میراگر و جرم تنظیم شونده فعال با استفاده از منطق فازی بدست آورده می شود.
در این رساله ابتدا مروری بر تحقیقات انجام شده بر روی سیستم های کنترل صورت گرفته ، پس از آن منطق فازی مورد توجه قرار می گیرد.به منظور بررسی عملکرد سیستم کنترل فعال (ATMD) معادلات حرکت ساختمان بلند به همراه سیستم کنترل فعال (ATMD) تحت اثر نیروی افقی زلزله نوشته شده و در فضای حالت حل می گردد.در این پایان نامه برای مقایسه عملکرد کنترل کننده فازی میراگر و جرم تنظیم شونده فعال با سیستم های کنترل کننده فعال سنتی ، نتایج حاصل از کنترل فازی با نتایج حاصل از یک سیستم سنتی کنترل خطی بهینه درجه دو LQR مقایسه شده است .
واژه های کلیدی : ساختمان بلند ، فضای حالت ، منطق فازی ، فازی میراگر و جرم تنظیم شونده فعال (ATMD) ، کنترل خطی بهینه درجه دو LQR .
پیشگفتار:
از دیر باز تا به حال بشر دستخوش حوادث بزرگی چون زلزله بر روی زمین بوده است. زلزله همواره ساختگاه زندگی انسانها را دچار تغییر و دگرگونی کرده است. تا به امروز انسانها همیشه سعی بر مهار این نیروی عظیم و خانمان افکن داشتهاند. با وجود آنکه در این زمینه موفقیتهایی نیز حاصل شده با این حال هنوز تعداد زیادی از ساکنین این کره خاکی هر ساله در زیر آوارهای بوجود آمده توسط زلزله مدفون میگردند و سازههای بسیاری کارآیی خود را پس از زلزله از دست میدهند.
این نیروی مهیب در درون زمین و به واسطه حرکتهایی که در پوسته ایجاد میشود باعث آزاد شدن انرژی زیادی میشود که مصنوعات روی زمین را دچار مخاطره میکند.
تا به حال آئیننامههای بسیاری در سراسر دنیا برای محاسبه و ساخت سازههای مقاوم در برابر زلزله تهیه شده است و روشهای بسیاری برای محاسبه این نیرو ارائه شده است که از آن جمله میتوان روش استاتیکی معادل، شبهاستاتیکی (یا طیفی)، دینامیکی و ... را نام برد. در تمام این روشها، نیروی زلزله اعمال شده بر ساختمانها توسط آمار و اطلاعاتی که از زلزلههای قبلی در دنیا یا منطقه ثبت شدهاند بدست میآید و ایمنی سازهها را بر حسب اهمیت سازه و نوع ساختگاه زمینشناسی بستر و اطلاعات دیگر تامین میکند. اما با این وجود، ممکن است زلزلهای که در آینده به هر یک از این سازهها وارد شود با تمام زلزلههایی که برای محاسبه مقاومت و پایداری سازه در نظر گرفته شده است متفاوت باشد. زیرا اساساً ماهیت زلزله یک پدیده اتفاقی بوده و رخ داد هر زلزله با تمام زلزلههای دیگر در سراسر جهان متفاوت است. به همین دلیل پس از محاسبه نیروی زلزله توسط روشهای ذکر شده روشهایی جهت طراحی ساختمان مقاوم در برابر زلزله مطرح میشوند. که این روشها را میتوان به دو دسته کلاسیک (سنتی) و مدرن تقسیمبندی کرد.
در روشهای کلاسیک طراحی بر اساس حداکثر نیروی اعمال شده به ساختمان با ترکیب نیروهای احتمالی که از طریق آئیننامههای مختلف بدست میآید، تکتک اجزاء سازه را بر اساس روش مقاومت نهایی یا نیروی حداکثر طراحی میکنند. اما در روشهای کلاسیک امروزیتر پایداری سازه با روش طراحی بر اساس عملکرد نیز مطرح شده است که در اینجا مجالی برای شرح این روشها نمیباشد.
اما در روشهای مدرن علاوه بر طراحی سازه به روش کلاسیک از سیستمهای الحاقی نیز به منظور بالا بردن ایمنی و مقاومت عناصر سازه در برابر بارهای دینامیکی و همچنین اقتصادی کردن اجزاء سازه کمک میگیرند.
این سیستمها به چهار دسته عمده بر اساس نوع الحاقشان به سازه و بر اساس نوع سیستمی که جهت کاهش نیروی زلزله در آنها به کار رفته، تقسیم میشوند: سیستمهای کنترل غیر فعال، فعال، نیمه فعال و مرکب.
به طور کلی این سیستمها انرژی زلزله را یا از طریق جذب یا از طریق تغییر در فرکانس سازه مهار میکنند و باعث میشوند که انرژی زلزله به اجزاء اصلی سازه صدمه نزنند.
این سیستمها را میتوان بر روی سازههای موجود نیز پیاده نمود که در صورت لزوم بعد از رخداد زلزله نیز قابل تعویض و یا تعمیر میباشند. با توجه به اینکه سازههای غیر مقاوم در برابر زلزله در کشورمان زیاد یافت میشود و همچنین با توجه به این نکته که استفاده از سیستمهای الحاقی به نحو بسیار مطلوبی پاسخ دینامیکی سازهها را کاهش میدهد، لذا استفاده از این سیستمها در کشورمان حائز اهمیت میباشد.
فهرست مطالب:
فصل اول: مقدمه
1-1- پیشگفتار
1-2- زلزله چیست
1-3- سیستمهای کنترل فعال (ATMD) و غیر فعال (TMD)
1-4- استفاده از منطق فازی در سیستمهای کنترل
1-5- لزوم انجام تحقیق حاضر
1-6- مراحل انجام پروژه
فصل دوم: مروری بر تحقسقات گذشته
2-1- مقدمه
2-2- مروری بر تحقیقات سیستمهای کنترل فعال ATMD
2-3- مروری بر تاریخچه تحقیقاتی نظریه مجموعههای فازی و زمینههای آن در مهندسی عمران
2-3-1- اولین زمینههای فکری
2-3-2- دهه 60: ظهور فازی
2-3-3- دهه 70: تثبیت مفاهیم بنیادی و ظهور اولین کاربردها
2-3-3- دهه 90 و سالهای آغازین قرن 21: چالشها کماکان باقیست.
2-3-4- فازی در ایران:
2-3-5- نظریه فازی در مهندسی عمران
2-4- تاریخچهای از الگوریتم ژنتیک
فصل سوم: سیستمهای کنترل سازهها
3-1- مقدمه
3-2- کنترل غیر فعال (Structural Passive Control)
3-2-1- سیستمهای جاذب انرژی
3-2-2- سیستمهای تغییر دهنده فرکانس سازه
3-3- کنترل فعال
3-4 کنترل نیمه فعال
3-5- کنترل مرکب
فصل چهارم: منطق فازی و کاربرد آن در مهندسی عمران
4-1- مقدمه
4-2- مجموعههای فازی
4-2-1- تعاریف و مفاهیم مجموعههای فازی
4-2-3- نماد گذاری
4-2-4- عملگرهای مجموعهای
4-3- اصل توسعه و روابط فازی
4-3-1- اصل توسعه
4-3-2- حاصل ضرب کارتزین فازی
4-3-3- اصل توسعه بر روی فضای حاصل ضرب کارتزین
4-3-4- رابطه فازی
4-4-5- ترکیب روابط فازی:
4-3-6- اعداد فانتزی
4-3-7- اعداد فازی L-R
4-4- منطق فازی
4-4-1- استدلال فازی
4-4-2- متغیرهای زبانی
4-4-3- قیود زبانی
4-4-4- قواعد اگر – آنگاه
4-4-5- گزاره فازی
4-4-6- شیوه استدلال فازی
4-4-7- روش ممدانی
4-4-8- روش استدلال فازی با استفاده از توابع خطی
4-4-9- استدلال فازی ساده شده
4-5- کاربردهای فازی در مهندسی عمران
4-5-1- سیستمهای فازی
4-5-2- پایگاه قواعد
4-6-3- ویژگیهای مجموعه قواعد
4-5-4- موتور استنتاج فازی
4-5-5- فازی ساز
4-5-6- غیرفازی ساز:
4-5-7- کنترل فازی
فصل پنجم : مطالعه عددی
5-1- مقدمه
5-2- ساختمان نمونه
5-3- مدل اجزاء محدود
5-4- معادلات دینامیک سازه
5-4-1- تعاریف
5-4-2- معادله حرکت سیستم
5-4-3- اثر تحریک تکیهگاهی ( نیروی زلزله)
5-4-4- ساخت ماتریس میرایی
5-5- شتابهای افقی زلزلههای مورد استفاده
5-6- حل دستگاه معادلات دیفرانسیل
5-6-1- حل کلاسیک
5-6-2- فضای حالت
5-6-3- نوشتن معادلات ساختمان بلند در فضای حالت
5-7- افزودن روابط سیستمهای کنترل TMD و ATMD به معادلات ساختمان بلند
5-7-1- سیستم کنترل غیر فعال میراگر و جرم تنظیم شونده (TMD)
5-7-2-کنترل میراگر و جرم تنظیم شونده فعال ATMD
5-8- کنترل فعال ساختمان بلند با استفاده از روش LQR
5-9- کنترل فعال ساختمانهای بلند با استفاده از منطق فازی
5-9-1- سیستم فازی ممدانی با دو ورودی و یک خروجی همراه با جدول جستجوی فازی 5×5 ; (FLC5)
فصل ششم : نتیجهگیری و پیشنهاد برای ادامه کار
6-1- نتیجه گیری
6-2- پیشنهاد برای ادامه کار
منابع و مأخذ:
[1] Abdel-Rohaman, M., 1987, Feasibility of active control of tall buildings against wind, ASCE, J. of structural Engng., 113,2.
[2] Abdel-Rohman, M., Lepholz, H.H.E., 1978, Model control of multistory structures, ASCE, J of eng. Mech. Div., 104, 1157-1175.
[3] Abe, M., Igusia T., 1995, Tuned mass dampers with closely spaced natural freqyancies, E.E.S.D., 24, 247-261.
[4] Ahlawat, A.S., Ramaswamy, A., 2001, Multi-objective optimal structural vibration control using fuzzy logic control system, J. of structural Engng., 127, 11.
[5] Ahlawat, A.S., Ramaswamy, A., 2002, Multi-objective optimal design of FLC diven hybrid mass damper for seismically excitated structures, E.E.S.D., 31, 1459-1479.
[6] Ahlwat, A.S., Ramaswamy, A., 1965, Multi objective control structural vibration control system, ASCE, J. ofstructural Engg., 8, 338-353.
[7] Alkien, I.D., etal, 1993, Testing of passive energy dissipation systems, Ersquake spectra, 9, 3, 335-370.
[8] Altrock, Constantin V., 1997, Fuzzy Logic & Nerofuzzy Applications Explained, 3-4.
[9] Bakule, L., Pulet-Crainiceanu, F., 2003, Decentralized overlapping control design for a cable stayed bridge henchmark, Proc. Of the wind world Conf. on structural control, 2, 869-874.
[10] Blair, B., 1994, Interview with Lotif zadeh, Azarbaijan Inter national, 2, 4, 2-6.
[11] Chag, C.C., Yang, H.T.Y., 1995, Cotrol of building using active tuned mass dampers, ASCE, J. of engg. Mechnics, 121, 3.
[12] Cherry, S., Filliatrault, A., 1993, Sesimic response control of building using friction dampers, Earthquake Spectra, 9, 3, 447-466.
[13] Chung, L.L., Reinhorn, A.M., Soong, T.T., 1988, Experiments on active control of seismic structures, ASCE, J. of Eng. Mech., 114, 241-256.
[14] Clark, A.J., 1988, Multiple tuned mass dampers for reducting earthquake induced building motion, Proc. 9th wourd Conf. of earthquake engineering, Tokyo-Kioto, Japan, 8, 779-784.
[15] Clough, R.W., Penzien, J., 1993, Dynamics of Structures, Secend Edition, Mc Graw-Hill, Inc.
[16] Coello, C.A., Chistiansen, A.D., 2000, Multiobjective optimization of trusses using genetic algorithms, Computers & Structures, 75, 647-660.
[17] Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B., 2002, Evolutionary algorithms for solving multi-objective problem, Kluwer Academic Pblishers, NY.
[18] Constantinou, M.C., Symans, D., 1993, Sesimic response of structures with supplemental damping, J. The Structural design of tall buildings, 2, 77-92.
[19] Dattam T.D., 1996, Control of dunamic response of Sttructures, Symposium on emrerging trends in vibration and noise, Engg., 18-20.
[20] Dejong, K., 1975, Analysis of the behavior of a class of genetic adaptive systems, PHD thesis, University of Michigan.
[21] Fonseca, C.M., Fleming, P.J., 1993, Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization, In Proc. Of the Fith Int. Conf. on genetic Algorithms, Forrest S. (Ed.), San Mateo, CA, Morgan Kaufmann, 416-423.
[22] Frigorian, C.E., Yang, T.S., Popev, E.P., 1993, Slotted bolted connction energy dissipators, Earthquake spectra, 9, 3, 491-504.
[23] Goldberg, D.E., 1989, Genetic algorithms in search, optimization and Nachine Learning, Reading, Addison-Wesley.
[24] Gupa, Y.P., Chandrasekaren, P.R., Absorber system for earthquake excitation, Proc. 4th wourd Conf. of earthquake engineering, Santiago, Chile, 2, 139-148.
[25] Haack, S., 1991, Philosophy of logic, Camberdge University Press, 152-153.
[26] Hartog, J.P., 1956, Mechanical vibratons, McGraw-Hill: New York.
[27] Hesser, G., 1991, Towards an optimal mutation probability in Gas, In H.P. Schwefeland R. Manner, eds, Paraller problem solving from nuture, 496, 23-32.
[28] Holland, J.H., 1975, Adaptation in natural, and Artificial systems, Ann Arboor: The University of Michgan Press.
[29] Igusa, T., Xu, K., 1994, Vibration control using multiple Tuned mass dampers and some design formulas, E.E.S.D., 175, 4, 491-503.
[30] Jansen, L.M., Dyke, S.J., 2002, Semiactive control strategies for MR damper, J. of Engg. Mechanics, ASCE, 126, 8, 795-803.
[31] Karata, H.N., Kobori, T., 1998, Semiactive damper system in large Earthquakes, Proc. Second would Conf. on structural control, Kyoto, 1, 359-366.
[32] Kawamura, H., Ohmori, Kito, N., 2000, Truss topology optimization by a modified genetic algorithm, Department of /architecture, Negoya University, Aichi, Japan.
[33] Kaynia, A.M., Venerziano, D., Biggs, J.M., 1981, Seismic effectivness of tuned mass dampers, J. of Struct. Div. ASCE, 107, 8, 1465-1484.
[34] Kitamura, H., Fujita, T., Teramoto, T., Kihara, H., 1988, design and alaysis of a tower structure with tuned mass damper, Proc. 9th wourd Conf. of earthquake engineering, Tokyo-Kioto, Japan, 8,415-420.
[35] Knowles, J., Corne, D., 1999, The Pareto archived evolution strategy: Anew baseline algorithm for multiobjective optimization, in Proc. Of the 1999 congress on Evolutionary Computation, Piscataway, NJ: IEEE Service Center, 98-105.
[36] Kicer, F.Y., Arora, J.S., 1999, optimal design of H-frame transmission poles for earthquake loading, J.Struct. Eng., 125, 1299-1308.
[37] Mahendra, P.S., Sarbject, S., Luis, M.N., 2002, Tuned mass dampers for response control of torsional buildings, E.E.S.D., 31,749-769.
[38] Marler, R.T., Arora, J.S., 2004, Survey of multi-objective optimzition methods for engineering, Struct. Multidisc. Optim., 26, 369-395.
[39] Micheal, D.S., Steven, W.K., 1999, Fuzzy logic control of bridge structures using intelligent semi-active seismic isolation systems, E.E.S.D., 28, 37-60.
[40] Morgan, G.Ch., 1998, Fuzzy logic, Routlendge Encyclopedia of Philosophy, 3, first edition, Craig, E.Routledge, London.
[41] Ogata, K. 1982, Modern Control Engineering, Engle wood Cliffs, N.J. Prentice Hall Inc.
[42] Pall, A.S. Marsh, C.1982, Response of friction damped braced frames, ASCE, J. of Structural Division, ST6, 1313-1323.
[43] Pareto, V., 1896, Cours d,economic ploitique, Lausanne, Switzerland, Rouge.
[64] Whittaker, A.S., 1992, UBC/EERC, 89, 2.
[65] Wirsching, P.H., Campbell, G.W., 1974, Minimal structural response under random excitation using the vibration absorber, E.E.S.D., 2, 303-312.
[66] Wu, S.J., Chow, P.I., 1995, Integrated discere and configuration optimization of trusses using GA, Coumputer & Structures, 55,4, 695-702.
[67] Xia, C., Hanson , R., 1992, Influence of ADAS element parameters on building seismic response, ASCE, J. Structural Div., 118.
[68] Yamaguchi H., Harnornchai, N., 1993, Fundamenal charactrastics of multiple tuned mass dampers for suppressing harmonically forced oscillators, E.E.S.D., 22, 51-62.
[69] Yang, N.J., Soong, T.T., 1989, Recent Advances in active control of civil engineering structures, Int., J. of probabilistic Engg. Mechanics, 3, 4, 179-187.
[70] Zadeh, L.A., 1988, Fuzzy logic, IEEE, computer magazine, 21, 4.
[71] Zimmermann, H.J., 1996, FuzzySet Theory and its Applications, third edition, Kluwer Academic Publishers, third edition.
[72] Zitzler, E., Thiele, L., 1998, An evolutionary algorithm for multiobjective optimization: The strength Pareto approach, Tech. Report 43, Computer engineering and federal ins. Of Tech., Zurich.
]73[ آذر، عادل.، فرجی، حجت.، 1380، علم مدیریت فازی، تهران.
]74[ تقدس، حسین.، محمودزاده، فتح الله.، شکرچیزاده، محمد. 1383، برآورد ضریب انتشار پذیری کلر در بتن به روش شبکه عصبی فازی، پنجمین کنفرانس سیستمهای فازی ایران، 223- 231.
]75[ زاهدی، مرتضی.، 1378، تئوری مجموعههای فازی و کاربردهای آن، نشر کتاب دانشگاهی.
]76[ سینایی، علی.، حجازی، فرزاد. 1382، بهینه سازی کنترل فعال سازه توسط شبکههای عصبی، ششمین کنفرانس بینالمللی مهندسی عمران، 389-395.
]77[ طاهری، سید محمود.، 1378، آشنایی با نظریه مجموعههای فازی، انتشارات جهاد دانشگاهی مشهد، چاپ دوم.
]78[ لوکس، کارو.، وهدانی، شهرام.، 1382، تحلیل اثر تشدید در درههای آبرفتی V شکل با استفاده از سیستم نرو فازی، نشریه دانشکده فنی، 37، 1، 63-74.
]79[ مرندی، مرتضی.، باقرپور، محمد حسین.، تحلیل ضریب اطمینان پایداری شیبهای خاکی با استفده از تئوری فازی، پنجمین کنفرانس سیستمهای فازی ایران، 635-645.
]80[ ناطق الهی، فریبرز.، 1378، میراگرهای انرژی در مقاوم سازی لرزهای ساختمانها، پژوهشکده بین المللی زلزله شناسی ومهندسی زلزله.
]81[ کاسکو، بارت، 1377، تفکر فازی، مترجمان غفاری، مقصود پور، دانشگاه صنعتی خواجه نصیرالدین طوسی.
نوع محصول : پاورپوینت
قابلیت ویرایش : دارد
تعداد صفحات (پاور) : 51
برای خرید این محصول به پایین مراجعه کنید.
......................................
برای دیدن عکس در اندازه اصلی روی آن کلیک کنید.
........................................
برای دیدن موضوعات مشابه روی عبارت زیر کلیک کنید.
دسته بندی : انسان طبیعت معماری
...............................
برای خرید این محصول به پایین مراجعه کنید.
خرید از این سایت بسیار امن و سریع و آسان است و تحویل فایل بلافاصله پس از خرید به ایمیل شما فرستاده می شود.
آموزش خرید اینترنتی 1 ..... آموزش خرید اینترنتی 2 ..... آموزش خرید فایل های بالای 50 هزار تومان سایت SKP