موضوع:
اولین بار رام رسمیsm-j500fn / j500fnxxu1aoi6 اندروید5.1.1
اولین بار رام رسمیsm-j500fn / j500fnxxu1aoi6 اندروید5.1.1
موضوع:
اولین بار رام رسمیsm-j500fn / j500fnxxu1aoi6 اندروید5.1.1
پیشگفتار
موضوع کلی این گزارش , بررسی نامتعادلی با رواثر آن در تلفات شبکه توزیع میباشد که شامل دو فصل میباشد بدین ترتیب که در فصل اول اثر عدم تعادل بار در افزایش تلفات شبکه توزیع بوده و به طور کلی مربوط به مطالعات اولیه میباشد تا دید کلی از هدف گزارش بدست آید. فصل دوم به بررسی روشهای کاهش تلفات نامتعادلی بار اختصاص دارد. فصل اول شامل دو بخش است که بخش نخست اثر عدم تعادل بار در افزایش تلفات در شبکه فشار ضعیف میباشد که به طور کلی به بررسی عدم تعادل بار در شبکه فشار ضعیف میپردازد و مقدار تلفات ناشی از آن محاسبه نمودخ و درصد آنرا نسبت به تلفات شبکه سراسری بیان میدارد. بدین وسیله به ارزش بررسی و تحقیق در این مورد پی برده میشود. در بخش بعدی اثر عدم تعادل بار در افزایش تلفات ترانسفورماتورهای توزیع مورد بحث و بررسی قرار گرفته است. از آنجائیکه ترانسفورماتورها مقداری تلفات نامتعادلی به علت غیر یکسانی مشخصات الکتریکی سیم پیچی ها دارند , همچنین به عنوان یک واسط سبب انتقال نامتعادلی فشار ضعیف به سمت فشار متوسط میشوند , لذا توجه به آن از اهمیت بسزایی برخوردار است. در این بخش در مورد انواع اتصالات ترانسها بحث شده است و میزان تلفات نامتعادلی در دون ترانس YZ و که بیشتر از همه در شبکه توزیع بکار میروند , محاسبه شده است. فصل دوم شامل دو بخش میباشد. در بخش اول الگوریتمی جهت تقسیم مناسب انشعابها بین فازها در شبکه فشار ضعیف ارائه شده است تا با متعادل کردن فازها تا حد امکان از تلفات ناشی از نا متعادلی بار کاسته شود. همچنین این الگوریتم قادر است تا شبکه موجود را به شکل بهینه تغییر شکل دهد تا تلفات نامتعادلی آن به حداقل برسد.
در بخش دوم به بررسی امکان افزایش سطح مقطع نول به منظور کاهش مقاومت نول و به تبع آن کاهش تلفات نول پرداخته شده است. همانطور که از فصل اول نتیجه گرفته شده است تلفات نول حدود سه برابر تلفات نا متعادلی بار در فازها میباشد , لذا نیاز به توجه و رسیدگی دارد. بخصوص در خطوط با بار زیاد اهمیت تعویض کابلهای نول با سطح مقطع بالاتر به خوبی احساس میشود.
سیستم زمین کامل علاوه بر این که نقش مهمی در حفاظت شبکه توزیع دارد , تا حدی زیاد از مقاومت نول نیز میکاهد. بخش سوم به این موضوع اختصاص دارد بدین ترتیب که با احداث زمینهای متوالی تا حد زیادی از مقاومت نول کاسته شده و به تبع آن تلفات نول و تلفات نامتعادلی کاهش مییابد. لذا در این بخش با ارائه نمودارها و محاسبات به امکان احداث زمینهای متوالی پرداخته شده است.
111 صفحه فایل ورد قابل ویرایش
فهرست مطالب
فصل اول : اثر عدم تعادل بار در افزایش تلفات شبکه توزیع
1-1-اثر عدم تعادل بار در افزایش تلفات شبکه فشار ضعیف
1-1-1-تبعات نامتعادلی بار
1-1-2-شبکه فشار ضعیف
1-1-2-1- عدم تساوی بار فازها[2
1-1-3- اضافه تلفات ناشی از جریان دار شدن سیم نول[4
1-1-4-رسم نمودار چگونگیرابطه بین افزایش عبور جریان از سیم نول و میزان
تلفات در شبکه (بار کاملاً اکتیو)[3]
1-1-5-شرایط لازم برای تعادل شبکه علاوه بر یکسان نمودن بار فازها
1-2- اثر نامتعادلی بار در افزایش تلفات ترانسفورماتورهای توزیع
1-2-1-عملکرد نا متعادل ترانسفورماتورهای سه فاز[6
1-2-2-بارهای تکفاز روی ترانسفورماتورهای سه فاز
1-2-3-بار تکفاز خط به خنثی در ترانسفورماتورهای سه فاز
1-2-4-بررسی تلفات نامتعادلی در ترانسهای توزیع
1-2-5-ارائه پیشنهاد جهت کم کردن تلفات نامتعادلی در ترانسفورماتورهای توزیع
فصل دوم : بررسی روشهای کاهش تلفات ناشی از نامتعادلی بار
2-1- ارائه الگوریتم جهت تعادل بار فازها
2-1-1- اساس روش
2-1-2-تعیین آرایش بهینه شبکه
2-1-3-تخصیص انشعاب جدید بودن تغییر آرایش شبکه
2-1-4-تخصیص انشعاب جدید به شبکه بهینه شده
2-1-5-ارائه الگوریتم
2-2- امکان سنجی افزایش سطح مقطع نول
2-2-1- امکان سنجی افزایش سطح مقطع نول در خطوط با بار سبک
2-2-2-امکان سنجی افزایش سطح مقطع در خطوط با بار متوسط
2-2-4-امکان سنجی افزایس سطح مقطع نول در خطوط با شعاع تغذیه طولانی
2-2-5- نتیجه گیری
2-3- سیستم زمین و اثر آن در کاهش تلفات شبکه توزیع
2-3-1- تلفات در سیستم نول [1
2-3-2- کاهش تلفات در سیم نول
2-3-3-کاهش افت ولتاژ در سیم نول
2-3-4- اثر زمین نول در محل مصرف
2-3-5- زمین کردن شبکه توزیع
2-3-6-مقاومت سیم اتصال زمین و مقاومت زمین[9
2-3-6-1- مدل خط توزیع
2-3-6-2- اثر نامتعادلی فازها بر روی تلفات با توجه به سیستم زمین
2-3-6-3-حساسیت تلفات نسبت به مقاومت اتصال به زمین
2-3-6-4- جنبه اقتصادی خطا در تلفات
2-3-6-5- مقایسه هزینه ایجاد سیستم زمین و صرفه جوئی ناشی از کاهش تلفات پیک
2-3-6-6- اثرات جریان عبوری از سیستم زمین
مراجع
پخش بار بهینه در شبکه های قدرت به کمک الگوریتم ژنتیک
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:PDF
تعداد صفحه:157
پایانامه برای دریافت درجه کارشناسی ارشد “M.Sc”
مهندسی برق- قدرت
چکیده :
پخش بار بهینه یکی از اساسی ترین مدول های نرم افزارهای موجود در مراکز بهره برداری و برنامه ریزی سیستم های قدرت است که به منظور تنظیم بهینه متغیرهای تحت کنترل سیستم برای دستیابی به تولیدی مطمئن با کمترین هزینه و بیشترین امنیت و نیز برآوردن اهداف عملیاتی دیگر در سیستم، به شکل های مختلف به کار می روند. علیرغم پیشرفت های چشمگیر به دست آمده در زمینه نرم افزارهای پخش بار بهینه، این مسئله همچنان به عنوان یکی از مشکل ترین مسئله های ریاضی باقی مانده است و الگوریتم کارآمدی که به طور همزمان دارای توانائی های سرعت، انعطاف پذیری و لحاظ پارامتر های قابلیت اطمینان در حل این مسئله باشد، تحت بررسی و مطالعه می باشد.
در این پایان نامه، حل مسئله پخش بار بهینه بر مبنای حداقل کردن تابع هدف به کمک الگوریتم ژنتیک صورت می گیرد و تابع هدف بر پایه حداقل کردن هزینه سوخت مصرفی نیروگاه ها با رعایت پارامترهای قابلیت اطمینان بنا شده است. لحاظ پارامترهای قابلیت اطمینان در تابع هدف به صورت افزودن یک تابع جریمه به تابع هدف می باشد.
همچنین نتایج حاصل از نرم افزار پخش بار بهینه، بر روی شبکه نمونه 30 شینه IEEE انجام پذیرفته و صحت نتایج با مراجع معتبر تائید شده است.
فصل اول:
مقدمه
مهندسین همواره با مسایل مربوط به تضمین سودآوری سرمایه گذاری های انجام شده به منظور تولید محصولات و ارائه خدمات مهندسی، مواجه بوده اند.
تضمین بازگشت سرمایه و سود مناسب سرمایه گذاری های عظیم به عمل آمده در صنعت برق، بهره برداری صحیح، مناسب و اقتصادی از این صنعت را در زمره مهمترین موضوعات مهندسی برق قرار داده است. در این راستا، افزایش راندمان و بازدهی تجهیزات الکتریکی و بهبود بهره برداری از آن در جهت صرفه جویی و حفظ هرچه بیشتر منابع روبه اتمام سوخت های فسیلی از یک طرف و کاهش قیمت تمام شده کیلووات ساعت برق تولیدی برای تولیدکنندگان این کالا با توجه به تورم سالانه و افزایش هزینه روزافزون مواد سوختی، نیروی انسانی و تعمیرات و نگهداری از این تجهیزات از طرف دیگر، از جمله مسایلی است که مهندسان را از دیرباز به خود مشغول کرده است. موفقیت های حاصل از این تلاش مستمر در زمینه ساخت و طراحی افزایش پیوسته، مداوم و قابل توجه راندمان بویلرها، ژنراتورها و دیگر تجهیزات انتقال و توزیع انرژی الکتریکی را به همراه داشته و در زمینه بهره برداری، در نتایج حاصل از تحقیقات دانشمندان و مهندسان کاملاً مشهود و بسیار امیدوار کننده است.
در این رهگذر پخش بار بهینه به عنوان ابزاری کارآمد، نقش بسزایی در بهره برداری هرچه اقتصادی تر از سیستم قدرت ایفا می نماید. به طور کلی، پخش بار اقتصادی وسیله ای برای کنترل توزیع توان حقیق مورد تقاضای مشترکین، بین واحدهای تولید کننده موجود در سیستم قدرت است و از آن در مسایل تبادل اقتصادی بین چند ناحیه سیستم و به مدار آوردن نیروگاه ها استفاده می شود. بعلاوه به عنوان ابزاری در طراحی سیستم های قدرت نیز مورد استفاده قرار می گیرد. مسئله بهره برداری اقتصادی از سیستم قدرت از زمانی مطرح شد که دو یا چند واحد تولید انرژی الکتریکی با یکدیگر در تامین بار یک سیستم الکتریکی مشارکت داشته و ظرفیت کل آنها در مجموع بیش از میزان مصرف بوده و لذا آرایش های متفاوتی از میزان تولید واحدها را به دنبال داشته است.
پخش بار اقتصادی عمدتاً یک مسئله بهینه سازی غیرخطی است که معمولاً هدف آن حداقل نمودن هزینه تولید است. گاهی اهداف دیگری مانند بهبود امنیت سیستم و کاهش صدمات زیست محیطی ناشی از احتراق سوخت های فسیلی در نیروگاه های حرارتی، نیز همزمان مورد نظر است. این بهینه سازی تحت یک دسته قیود معادله ای و نامعادله ای انجام می پذیرند. قیود معادله ای سیستم براساس نوع مدل انتخابی برای شبیه سازی شبکه و قیود نامعادله ای با توجه به محدودیت های فیزیکی و عملیاتی موجود در سیستم تعیین می شوند. بنابراین مسئله پخش بار بهینه در سیستم قدرت را می توان توسط یک مدل بهینه سازی غیرخطی با محدودیت که دارای چندین تابع هدف است، نشان داد.
پخش بار اقتصادی در صورتی که فقط به منظور تعیین میزان تولید حقیقی نیروگاه ها انجام شود و در آن شبیه سازی شبکه تنها با یک معادله تعادل مربوطه به توان های حقیقی صورت پذیرد، پخش بار اقتصادی کلاسیک خوانده می شود. در صورتی که تنظیم دیگر متغیرهای قابل کنترل سیستم به مقدار بهینه خود مدنظر باشد، باید از مدل های دقیق تر برای شبیه سازی شبکه استفاده نمود. چنانچه از معادلات پخش بار سیستم به عنوان مدل شبکه استفاده شود، مسئله به پخش بار بهینه یا به اختصار، OPF تبدیل می گردد.
و...
مقدمه :
بی شک صنعت برق مهمترین و حساسترین صنایع در هر کشور محسوب میشود. بطوریکه عملکرد نادرست تولید کنندهها و سیستمهای قدرت موجب فلج شدن ساختار صنعتی ، اقتصادی ، اجتماعی و حتی سپاسی در آن جامعه خواهد شد. از زمانیکه برق کشف و تجهیزات برقی اختراع شدند. تکنولوژی با سرعت تساعدی در جهت پیشرفت شتاب گرفت. بطوریکه میتوان گفت در حدود دویست سال اخیر نود درصد از پیشرفت جامع بشری به وقوع پیوست. و شاید روزی یا هفتهای نباشد که دانشمندان سراسر جهان مطلب جدیدی در یکی از گراشیهای علم برق کشف و عنوان نکنند. و انسان قرن بیست و یکم بخش قابل توجهای از آسایش رفاه خود را مدیون حرکت الکترونها میباشد. و دانشمندان در این عرصه انسانهای سختکوش بودند که همه تلاش خود را برای افراد راحت طلب بکار بستند.
در آغاز شکل گیری شبکههای برقی ، مولدها ، برق را بصورت جریان مستقیم تولید میکردند و در مساحتهای محدود و کوچک از آنها بهرهمند میشد. و این شبکهها بصورت کوچک و محدود استفاده میشد. با افزایش تقاضا در زمینه استفاده از انرژی الکتریکی دیگر این شبکههای کوچک پاسخگوی نیاز مصرف کنندهها نبود و میبایست سیستمهای برقرسانی مساحت بیشتری را تحت پوشش خود قرار میدادند. از طرفی برای تولید نیز محدودیتهایی موجود بود که اجازه تولید انرژی الکتریکی را در هر نقطه دلخواه به مهندسین برق نمیداد. زیرا که نیروگاهها میبایست در محلهایی احداث میشد که انرژی بطور طبیعی یافت میشد. انرژیهای طبیعی مثل : آب ، باد ، ذغال سنگ وغیره بنابراین نیروگاهها را میبایست در جاهایی احداث میکردند که یا در آنجا آب و یا باد و یا ذغال سنگ و دیگر انرژیهای سوختی موجود بود. بدین ترتیب نظریه انتقال انرژی الکتریکی از محل تولید انرژی تا محل مصرف پیش آمد. این انتقال نیز توسط برق جریان مستقیم امکانپذیر نبود. زیرا ولتاژ در طول خط انتقال افت می کرد و در محل مصرف دیگر عملاً ولتاژی باقی نمیماند. بنابراین مهندسین صنعت برق تصمیم گرفتند که انرژی الکتریکی را بطور AC تولید کنند تا قابلیت انتقال داشته باشد. و این عمل را نیز توسط ترانسفورماتورها انجام دادند. ترانسفورماتورها میتوانستند ولتاژ را تا اندازه قابل ملاحظهای بالا برده و امکان انتقال را فراهم آورند. مزیت دیگری که ترانسفورماتورها به سیستمهای قدرت بخشیدند. این بود که با بالا بردن سطح ولتاژ ، به همان نسبت نیز جریان را پائین می آوردند ، بدین ترتیب سطح مقطع هادیهای خطوط انتقال کمتر میشد و بطور کلی میتوانستیم کلیه تجهیزات را به وسیله جریان پائین سایز نماییم. و این امر نیز از دیدگاه اقتصادی بسیار قابل توجه مینمود.
بدین ترتیب شبکههای قدرت AC شکل گرفت و خطوط انتقال و پستهای متعددی نیز برای انتقال انرژی الکتریکی در نظر گرفته شد. و برای تأمین پیوسته انرژی این شبکهها به یکدیگر متصل شدند و تا امروه نیز در حال گسترش و توسعه میباشند. هرچه سیستمهای قدر الکتریکی بزرگتر میشد بحث بهرهبرداری و پایداری سیستم نیز پیچیدهتر نشان میداد. و در این راستا مراکز کنترل و بهره بردار از سیستمهای قدرت میبایست در هر لحظه از ولتاژها و توانهای تمامی پستها و توانهای جاری شده در خطوط انتقال آگاهی مییافتند. تا بتوانند انرژی را بطور استاندارد و سالم تا محل مصرف انتقال و سپس توزیع کنند. این امر مستلزم حل معادلاتی بود که تعداد مجهولات از تعداد معلومات بیشتر بود. حل معادلاتی که مجهولات بیشتری از معلومات آن دارد نیز فقط در فضای ریاضیاتی با محاسبات عدد امکانپذیر است که در تکرارهای مکرر قابل دستیابی است. در صنعت برق تعیین ولتاژها و زوایای ولتاژها و توانهای اکتیو و راکتیو در پستها و نیروگاهها را با عنوان پخش بار (load flow) مطرح میشود.
پخش بار در سیستمهای قدرت دارای روشهای متنوعی میباشد که عبارتند از : روش نیوتن ۰ رافسون ، روش گوس – سایدل ، روش Decaupled load flow و روش Fast decaupled load flow که هر یک دارای مزیتهای خاص خود میباشد. روش نیوتن- رافسون یک روش دقیق با تکرارهای کم میباشد که جوابها زود همگرا میشود ، اما دارای محاسبات مشکلی است. روش گوس – سایدل دقت کمتری نسبت به نیوتن رافسون دارد و تعداد و تکرارها نیز بیشتر است اما محاسبات سادهتری دارد. روش Decaupled load flow یک روش تقریبی در محاسبات پخش بار است و دارای سرعت بالایی میباشد ، و زمانی که نیاز به پیدا کردن توان اکتیو انتقالی خط مطرح است مورد استفاده میباشد. روش Fast decaupled load flow نیز یک روش تقریبی است که از سرعت بالایی نیست به نیوتن رافسون و گوس سایدل برخوردار میباشد. و از روش Decaupled load flow نیز دقیقتر میباشد. اما مورد بحث این پایاننامه روش نیوتن – رافسون است که در ادامه به آن میپردازیم.
130 صفحه فایل ورد قابل ویرایش
فهرست مطالب:
مقدمه
فصل اول – شرحی بر پخش بار .
۱- پخش بار
۲- شین مرجع یا شناور
۳- شین بار
۴- شین ولتاژ کنترل شده
۵- شین نیروگاهی
۶- شین انتقال
فصل دوم – محاسبات ریاضی نرم افزار
۱- حل معادلات جبری غیر خطی به روش نیوتن-رافسون
۲- روشی برای وارون کردن ماتریس ژاکوبین
فصل سوم – معادلات حل پخش بار به روش نیوتن-رافسون
۱- حل پخش بار به روش نیوتن – رافسون
فصل چهارم – تعیین الگوریتم کلی برنامه
۱- الگوریتم کلی برنامه
۲- الگوریتم دریافت اطلاعات در ورودی
۳- الگوریتم محاسبه ماتریس ژاکوبین
۴- الگوریتم مربوط به وارون ژاکوبین
۵- الگوریتم مربطو به محاسبه
۶- الگوریتم مربوط به محاسبه ماتریس
۷-الگوریتم مربوط به ضرب وارون ژاکوبین در ماتریس
۸- الگوریتم مربوط به محاسبه
۹- الگوریتم تست شرط
۱۰- الگوریتم مربوط به چاپ جوابهای مسئله در خروجی
فصل پنجم – مروری بر دستورات برنامه نویسی C++
1- انواع داده
۲- متغیرها
۳۳- تعریف متغیر
۴- مقدار دادن به متغیر
۵- عملگرها
۶- عملگرهای محاسباتی
۷- عملگرهای رابطهای
۸- عملگرهای منطقی
۹- عملگر Sizcof
10- ساختار تکرار for
11- ساختارتکرار While
12- ساختار تکرار do … While
13- ساختار تصمیم if
14- تابع Printf ( )
15- تابع Scanf ( )
16- تابع getch ( )
17- اشارهگرها
۱۸- متغیرهای پویا
۱۹- تخصیص حافظه پویا
۲۰- برگرداندن حافظه به سیستم
۲۱- توابع
۲۲- تابع چگونه کار میکند
فصل ششم – تشریح و نحوی عملکرد برنامه
فصل هفتم – نرم افزار
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:75
فهرست مطالب
فهرست مطالب
عنوان صفحه
چکیده 1
مقدمه 2
فصل اول : بازیافت گرما
کاربردهای بازیافت انرژی در صنعت 4
مزایای اقتصادی بازیافت گرما 4
مزایای زیست محیطی بازیافت گرما 5
تجهیزات بازیافت انرژی 6
اساس تجهیزات بازیافت انرژیگاز – گاز 6
1ـ لوله های حرارتی (heat pipe) 6
2 ـ مبدل های حرارتی گردان (Rotary) 7
3 ـ سیستم بازیافت انرژی گردشی(Run – Around energy recovery Loop) 8
4 ـ مبدل های حرارتی صفحه ای ثابت (Fix Plate) 8
فصل دوم: آشنایی با لوله های گرمایی
تئوری لوله های گرمایی 11
اصول عملکرد لوله های گرمایی 12
محدودیت های انتقال حرارت در لوله های گرمایی 18
1 ـ حد جوشش 18
2 ـ حد موئینگی 19
3 ـ حد لزجت 19
4 ـ حد ماندگی 20
5 ـ حد صوتی 20
انواع لوله های گرمایی 22
الف) بر حسب ساختار 22
1 ـ ترموسیفون 22
2 ـ لوله ی گرمایی استاندارد 23
3 ـ لوله ی گرمایی حلقوی 24
4 ـ لوله گرمایی صفحه تخت 24
5 ـ لوله ی گرمایی شعاعی (گردان) 24
6 ـ لوله ی گرمایی پیش لبه 25
ب) بر حسب دمای عملیاتی 25
1 ـ لوله ی گرمایی سرمازا (CHP) 25
2 ـ لوله ی گرمایی دما پایین (LHP) 26
3 ـ لوله ی گرمایی دما متوسط 26
4 ـ لوله ی گرمایی دما بالا 26
محدوده ی کاربرد لوله های گرمایی 26
کاربردهای مبدل های حرارتی لوله ی گرمایی 27
1 ـ گرمایش کف و روشنایی ساختمان 27
2 ـ گلخانه ها و کاربردهای کشاورزی 28
3 ـ سرد کردن وسایل برقی و الکترونیکی 28
4 ـ تولید الکتریسیته 30
5 ـ دیگ بازیاب گرمای اتلافی 30
6 ـ جوش آورهای صنایع شیمیایی و پتروشیمی 31
7 ـ مبدل های حرارتی خشک کن ـ هوا 32
8 ـ بازیافت گرمایی محیط نانوایی 33
فصل سوم : بازیافت گرمای هدر رفته در نانوایی ها
سیستم بازیافت گرما 36
استفاده از سیستم بازیافت گرما در صنایع پخت نان 37
سیستم بازیافت گرمای پخت نان Buttercup با استفاده از LTHE 38
سیستم گرمای هدر رفته در نانوایی 38
تجزیه و تحلیل طرح 39
شرایط نانوایی 39
سیستم لوله و مجاری موجود در نانوایی 39
سیستم فن 41
شارژ نمودن مبدل گرمایی لوله گرمایی ترموسیفون حلقه ای 41
بررسی اطلاعات نادرست قبلی 41
اندازه گیری جریان 42
اندازه گیری دما 42
فصل چهارم : تاثیر نسبت هندسی و نسبت پر شدن بر ویژگی های انتقال گرما در یک ترموسیفون بسته دو فازی 44
لوازم آزمایشی و فرآیند مربوط بدان 47
نتایج آزمایشگاهی و بحث و بررسی 50
نتایج 52
فهرست علامات 53
فصل پنجم : تجزیه و تحلیل اثر بار حرارتی یک لوله گرمایی بدون فتیله ( ترموسیفون ) و محاسبه ضریب کلی انتقال حرارت و جابجایی بر روی آن
آزمایش های ترموسیفون 55
تجزیه و تحلیل اثر بار حرارتی لوله گرمایی 57
اتلاف حرارت در قسمت چگالنده 57
اتلاف حرارت در قسمت تبخیر کننده و آدیاباتیک 59
بحث و نتیجه گیری 61
Cahpter 5 : The effect analysis of the heat load of a wickless heat pipe (thermosiphon) and compotation of total heat transfer coefficient and moving on it .
Abstract 65
Introduction 65
thermosyphon experiments 66
Heat waste in dester part 68
Heat waste in evapolator and adiabatic part 70
Result and discussion 71
REFERENCES 74
لولهگرمایی، یکی از فنآوریهای جدید جهت انتقال حرارت است که در صنایع مختلف کاربردهای زیادی دارد. یکی از کاربردهای مهم این وسیله بازیافت انرژی از دودکشها با استفاده از مبادلهکن لولهگرمایی میباشد که با توجه به بحران انرژی و آلودگی محیط زیست در سالهای اخیر دارای اهمیت زیادی است. معمولاً گازهای احتراق دیگهای بخار و