نیروی آیرودینامیک به عنوان یکی از نیروهای مقاوم وارد از طرف جاده شناخته می شود . نیروی آیرودینامیک وارد بر خودرو ، با نیروی دراگ و نیروی بالابرنده یا پایین برنده ، گشاور دورانی ، پیچشی و چرخشی و صدا اثر متقابل دارد . این نیروها بر مصرف اقتصادی سوخت ، کنترل کردن خودروو NVH بسیار موثرند .
نیروهای آیرودینامیکی روی خودرو از دو منبع نیروی فشار (دراگ) و اصطکاک چسبنده (گران رو) به وجود می ایند . در ابتدا مکانیک جرین هوا به منظور تشریح ماهینت جریان اطراف بدنه خودرو بررسی می شود سپس ساختار طراحی خودرو برای نمایش اثر کیفی کارکرد آیرودینامیکی مورد مطالعه قرار می گیرد .
مکانیک جریان هوای اطراف خودرو
توده جریان هوای روی بدنه یک خودرو از رابطه بین سرعت و فشار در معادله برنولی به دست می آید .
در فاصله دور از خودرو ، فشار استاتیکی هوا همان فشار محیطی یا فشار با رومتری یا فشار اتمسفری است . فشار دینامیکی به وسیله رابطه سرعت مربوط به دست می آید . رابطه ای که برای تمام خطوط جریان هوایی که به خودرو نزدیک می شوند صادق است . بنابراین فشار کل برای تمام خطوط جریان هوا ثابت است و برابر است با . هنگامی که جریان هوا به خودرو نزدیک می شود توده جریان هوا شکافته می شود که قسمتی به بالای خودرو و بقیه به زیر می روند . در نتیجه یک خط جریان مستقیما به بدنه برخورد می کند و به آن می چسبد (همان جریانی که با سپر خودرو بر خورد کرده ) و سرعت جریان به صفر میل می کند . با سرعت صفر ، فشار استاتیکی در آن نقطه از خودرو برابر خواهد بود و در صورتی که فشار ضربه وارد در این نقطه از خودرو صفر باشد فشار استاتیکی برابر فشار کل خواهد بود .
در نظر بگیرید چه اتفاقی برای جریان روی کاپوت می افتد . در ابتدا خطوط جریان به طرف بالا هدایت می شوند و انحناء خطوط جریان به صورت مقعر به سمت بالاست . در فاصله ای از بالای خودرو برای نیروهای آیرودینامیکی می توان در معادهل برنولی جریان هوا را غیر متراکم فرض کرد در حالی که رابطه مناسب برای جریان هوای متراکم معادله اول است .
این رابطه از به کار بردن قانون دوم نیوتن برای یک پیکر قابل رشد ، و از جریان سیال در یک مدل مناسب به دست آمده است . رفتار معقول (خوش رفتاری) به این معنی است که حرکت جریان هوا به آرامی صورت گیرد و اصطکاک ناچیز و جزئی باشد . برای جریان هوای نزدیک خودروی موتوری می توان از این فرض استفاده کرد . این معادله از مجموع نیروهایی که اثر فشاری روی ناحیه های مختلفی از بدنه سیال دارند به دست آمده است که این اندازه حرکت با تغییر آهنگ زمانی بر حسب سرعت بیان می شود .
هنگامی که جریان هوا به خودرو نزدیک می شود معادله برنولی بیان می کند که مقدار فشار استاتیکی به عالوه فشار دینامیکی هوا مقدار مشخص خواهد بود . تصور کنید که خودرو ساکن است و هوا حرکت می کند (مثل تونل باد) جریان هوا در امتداد خطوطی حرکت می کند که خط جریان نامیده می شود .
خطوط جریان یک دسته خطوطو هوا به شکل لوله جریان هوا هستند . جریان دود د رتونل باد به مرئی شدن لوله های جریان هوا کمک می کند .
در جایی که خطوط جریان مستقیم هستند فشار استاتیکی برابر با فشار محیط خواهد بود . به این خاطر که خطوط جریان به سمت بالا انحنا پیدا کرده اند و برای جلوگیری از نیرویی که مسیر جریان هوا را به سمت بالا هدایت می کند فشار استاتیکی آن نقاط از فشار محیط بیشتر خواهد بود .
ار گفشار استاتیکی بیشتر باشد سرعت کاهی یابد . بر عکس هنگامی که جریان روی کاپوت حرکت می کند (قیمت پایینی انحناء لبه کاپوت) فشار باید از فشار محیط کمتر باشد زیرا جریان هوا انحناء پیدا کرده و سرعت افزایش می یابد . این نقاط در شکل 2 به تصویر کشیده شده اند و جریان هوای اطراف استوانه ای را نشان می دهد .
معادله برنولی چگونگی تغییرات فشار و سرعت را برای توده ی جریان هوای روی بدنه خودرو توضیح می دهد . در صورت عدم وجود نیروی اصطکاک جریان هوا به راحتی از بالای سقف خودرو حرکت کرده و از پشت خودرو پائین می آید و تغییرات فشار در اثر سرعت همان طوری که در جلوی خودرو اتفاق افتاده بود انجام می گیرد .
در این حالت نیروی فشار در پشت خودرو دقیقا معادل نیروی جلو خواهد بود که موجب تولید نیروی مقاوم دراگ می شود .
در شکل 3 به جریان یکنواختی که به لبه تیز بدنه نزدیک می شود توجه کنید .
نزدیک به بدنه تمام لایه های هوا دارای سرعت یکسان هستند ( در نظر بگیرید که جریان آرام خوش رفتار است ) هنگامی که جریان از روی بدنه می گذرد و به سطح برخورد می کند به علت اصطکاک سطح سرعت به سمت صفر کاهش پیدا می کند .
بنابراین بروفیل سرعت نزدیک سطح گسترش می یابد و برای بعضی از فواصل سرعت از سرعت جریان اصلی هم کمتر است . منطقه ای که سرعت در آن کاهش یافته ، به ناحیه لایه مرزی معروف است . لایه مرزی با ضخامت صفر شروع به تشکیل کرده و در طول بدنه افزایش می یابد در ابتدا این جریان از نوع جریان آرام است ولی ناگهان تبدیل به جریان آشفته می شود.
توزیع فشار روی خودرو
یک مکانیزم کلی برای توزیع فشار استاتیکی در امتداد بدنه خودرو در نظر گرفته می شود .ش کل 5 نشان دهنده اندازه گیری تجربی فشار عمودی روی سطح است . فشارهای منفی یا مثبت با توجه به فشار محیطی در روی بعضی از نقاط خودرو مشخص شده اند .
هنگامی که جریان هوا روی خودرو می چرخد و به صورت افقی در طول کاپوت حرکت می کند ، فشار منفی بر روی قسمت لبه جلویی کاپوت خودرو ایجاد می شود . گرادیان فشار مخالف در این منطقه دارای این توانایی است که جریان لایه مرزی را که موجب به وجود آمدن نیروی دراگ در این ناحیه می شود ساکن کند . در چند سال گذشته نصب قطعه کوچکی در جلوی خط کاپوت دارای ارجحیت بوده زیرا موجب جلوگیری از جداشدن جریان در روی کاپوت و کاهش نیروی دراگ می شود .
نزدیک برف پاکن ها و جلوی اتاق خودرو جریان باید به طرف بالا خم شود ؛ بنابراین فشار زیادی تولید می شود این منطقه فشار قوی منطقه مناسبی برای دخالت هوا در سیستم های کنترل هوا یا ورودی هوا به طرف موتور است و در گذشته برای این منظور در اکثر خودروها از این منطلب استفاده می شده است .
فشار زیاد همراه با سرعت کم در این منطقه ایجاد می شود و موجب می شود که برف پاکن ها از گزند نیروی آیرودینامیک در امان باشند . در بالای سقف خودرو هنگامی که جریان از خط سقف عبور می کند فشار دوباره منفی می شود .
یک نمونه کلی برای جریان هوا بر روی خودرو و اطراف آن در شکل 6 نشان داده شده است . جریان اطراف خودرو به سمت منطقه کم فشار در قسمت عقب کشیده می شود و ترکیب این جریان با جریانی که از سقف عبور می کند باعث ایجاد جریانهای حلقوی عقب خودرو می شود .
انتخاب شیب اتاق عقب و همچنین طول صندوق عقب خودرو ، رابطه مستقیمی با نیروی آیرودینامیکی – که از طریق نقطه جدایش ایجاد می شود – دارد . جدایی باید در نقاط مشخص و محدودی روی دهد هر چند این ناحیه کوچکتر باشد نیروی مقاوم کمتر می شود . به صورت تئوری یک شکل ایده آل برای عقب خودرو از نظر ایرودینامیکی شکلی شبیه به قطره اشک است .
این شکل مثل یک مخروط است که راس ان زاویه ای کمتر از 15 درجه یا برابر 15 درجه داشته باشد . این نکته در دهه 1930 کشف شد . به خاطر اینکه نوک مخروط بسیار کوچک است انتهای خودروی ایده آل بدون ناحیه جدایی بزرگی برش زده می شود .
با صاف کردن شکل انتهای خودرو ، ارتفاع برای صندلی عقب بیشتر می شود بدون اینکه نیروی دراگ قابل ملاحظه ای تولید شود . اسم این مشخصه از عبارت « کام بک » به دست آمده است . از آنجایی که اندازه منطقه جدایش روی نیروی مقاوم آیرودینامیک تاثیر مستقیم دارد دامنه جریانی که به قسمت عقب خودرو و برای چرخش به سمت پائین آن فشار می آورد بر نیروی بالا برنده آیرودینامیکی در عقب تاثیر می گذارد . شکل (8-4) اثر نیروی آیرودینامیکی بالا برندهن را نشان می دهد که بر روی عقب خودرو تاثیر می گذارد . شکل 7 اثر نیروی آیرودینامیکی بالا برنده و نیروی دراگ را برای انواع مختلف خودرو نشان می دهد . کنترل جریانی که منطقه جدایش را کاهش می دهد موجب تولدی نیروی آیرودینامیکی بالا برنده بیشتری در عقب خودرو می شود زیرا همان طور که جریان کاهش می یابد فشار هم کم می شود .
پدیده جدایش که در لبه عقبی سقف اتفاق می افتد شدیدا به شکل جایی که اتفاق می افتد و زاویه اتاق عقب بستگی دارد . برای شکل سمت چپ لبه تیز در روی خط سقف باعث گسترش جدایی در این محل می شود هنگامی که یک مرز جدایی کامل و مشخص به کوچک شدن مخروط ایرودینامیک کمک کند با دخالت اتاق عقب در منطقه جدایی میزان نشست گرد و غبار روی شیشه ها افزایش می یابد . در حالی که خودرویی که در سمت راست قرار دارد از نظر زاویه اتاق عقب نیز مناسب است به آرامی جریان هوا را به عقب سقف انتقال می دهد و علاوه بر این یک صندوق عقب کوچک باعث می شود که جریان هوا از اطراف خودرو به پائین بیاید . منطقه جدایی کاملا به وسیله کناره های تند و تیز انتهای صندوق مشخص می شود و به ثبات منطقه جدایی و کوچک کردن شکل مخروط کمک می کند با این طراحی مفقط چراغهای عقب در معرض گردو خاک جاده است .
نیروهای آیرودینامیکی
در نتیجه عکس العمل متقابل بدنه خودرو و جریان هوا نیروها و گشتاورها ایجاد می شوند . این نیروها را می توان به صورت سینماتیک به عنوان سه ینرو و سه گشتاور مانند شکل 9مشخص کرد که این گشتاور ها و نیروها حول محورهای اصلی خوردو عمل می کنند . این عکس العملها به شرح زیراند .
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 26 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلودمقاله آیرو دینامیک